
Advances in Pure Mathematics, 2012, 2, 15-21 
http://dx.doi.org/10.4236/apm.2012.21004 Published Online January 2012 (http://www.SciRP.org/journal/apm) 

Classification of Rational Homotopy Type for 
8-Cohomological Dimension Elliptic Spaces 

Mohamed Rachid Hilal1, Hassan Lamane1, My Ismail Mamouni2*  
1Faculté des Sciences Aïn Chock, Casablanca, Morocco 

2Centre Pédagogique Régional, Rabat, Morocco 
Email: {rhilali, hlamanee}@hotmail.com, *mamouni.myismail@gmail.com  

 
Received September 21, 2011; revised November 8, 2011; accepted November 15, 2011 

ABSTRACT 

The different methods used to classify rational homotopy types of manifolds are in general fascinating and various (see 
[1,7,8]). In this paper we are interested to a particular case, that of simply connected elliptic spaces, denoted X, by dis-

cussing its cohomological dimension. Here we will the discuss the case when  ; 8*H X   0Xdim  and  . 
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1. Introduction 

Let us first recall some basic definitions of rational homo- 
topy theory. A simply connected space X is called elliptic, 
if both of  and  ;H X *  π X 

 dim ;
k kH X 

*  are finite dimen- 
sion, and that its cohomological Euler-Poincar charac- 
teristic is given as 

0k
. 

We will fix this throughout this paper. The space is 
called rational if 

   : 1X  



c

*π X  is a -vector space. If it is 
not, by [4], we can associate a rational simply connected 
space, denoted 



X

 * *; H

, verifying  

 , asalgebrasH X X

   * *π asX X 




  

 

,

vectorspaces.
 

The rational homotopy type of X is defined as the 
homotopy type of its rationalization X . Our purpose 
in this paper to give a complete classification this rational 
homotopy type when  ;H X *mdi  and   0c X  . 

2. Preliminaries 

The rational homotopy theory was founded in the the end 
of the sixties by Daniel Quillen and Denis Sullivan. One 
of the technical gadget of this theory is the minimal 
model of Sullivan, it is a free -commutative differen-
tial graded algebra   associated to any simply 
connected CW complex X of finite type [3]. Here 

2  is -graded vector space with 


,V d

=  dim <iVi
iV V    

and d a decomposable differential; that means  
(d does not have a linear part) and that 

. It is well known that the minimal model

 2 i
V

   1idV

2 = 0d ,V d  
determines the rational homotopy type of X, in the sense that  

   
 

* *

*

; , asalgebras

π asvectorspaces

H X H V d

X V



 
  .

2

 

For example, the minimal model of an even sphere 
n is of the form   x, ,y d  with x 2n , y 4 1n ,   

0dx     , 2dy x * 2 2;n x x 
2 1n

, while the  H  and 

minimal model of an odd sphere  is of the form 
  , ,x y d  with 2 1 0dy 

V

y n , . It will be utile 
for our proofs, to recall the reader this simple properties. 
For a homogeneous element x of , x  denotes its 
degree, which verifies the following:  

 1
x y

xy y 
   

x ;   
  1

x
xdy  (Leibniz formula).  d xy dx y 

2 0xIn particular xy yx , when x  is odd and   
when x  is even. 

   : 1 dim
k k

0k
X V  

 

π

π
odd

0 and 0

0 0

, 0

c

c

H V d

 

 

 

  

 
 is called the homotopic 

Euler-Poincar characteristic of X. In [5], S. Halperin 
have shown the following:  

  

      (1) 

One other notion that we will use throughout this pa-
per is the formal dimension of X, given as  

    : max , ; 0nfd X n H X 
1, , na a

. We know from [5] 
that, when  are the elements of an homogene-*Corresponding author. 
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ous basis of V,  

   
even

1 .
i i

i ia  
odda a

fd X a         (2) 

Our proofs are essentialy based on this equality com-
bined with an other equality established by J. Friedlander 
and S. Halperin in [2], that  

 

 2 1.

a fd X

a fd X



 

 * ;H X 

 ;n X

even

odd

i

i

i
a

i
a




          (3) 

Finally, let us recall that  satisfies the 
Poincar duality, that means that the multiplication  

 k nH X H H ; ;k X     
 X

 is a non 
degenerate bilinear form (here  and n fd   
denotes the so called fundamental class of  * ;H X  ). 
For the reader interested by more details about the rational 
homotopy theory, we recommend the basic reference [3]. 

3. The Main Theorem 

In all the remainder of this paper, X denotes a simply 
connected elliptic space with  * ;H X dim 8 0, c   
and  will denotes it minimal model. Put 

1

 ,V d
 , , ,


61,    a basis for  with the condi-

tion that 
 ;*H X

1i i    and that i  with a V  i ia  . 
The following table summarizes the classification of its 
rational homotopy type. 
  

Rational homotopy type of X   Legend 

 32 1k    3 2 1X k  fd  

2n n     4n  

Legend: 1) In [6], I. M. James has introduced the 
concept of reduced product when X is a based space. He 
put X X 1 :  and  

   

fd X n

n n     4

 and n is odd  

   
2 2

2
#n n   fd X n

2 1 2 1k k     1 2

 and n is odd  

 2 k p    2 2 fd X k k p   

n n   4 2 1n n p   

2 2n n    4 2 1n n p   

  2
2 12 n pn   

2n k   2 2k n 

2 1n Y

 

  2 12 2 n pn     fd X
2d    

 2 1n p   fd X  

  

k   


  *

 2 12 2 1 n kn k     
 2 1 2n kn k

d

    

 
2 1

3

n k 

2 12 1 2 1 31 2 kk k     

  

  

2 1   

  

  

E  E : the total space of the fiber bundle

 with  as base space 2 1 2 1p q  

  1 1 1 1: , ,*, , *, , , .p ppX X X x x x x       

n n

 

2) From this construction applied to an even sphere 
 arises the James sphere  p , satisfying  

      * 1;n pH a a   

n

p . The use of the denotation 

p

 1, ,5i 

 means implicitly that n is supposed to be even. 
As the most of our proofs will be by contradiction, we 

will mark such proofs by (by contradiction) in its begin-
ning and by (QED) when its end. In the spirit and desire 
to simplify the lecture of this paper, we will subdivide it 
on many propositions, lemmas and theorems. The first 
one is that: 

Lemma 1 There exists  such that  <i
1i .  

Proof. Suppose that 1i i n   , then   

     1 1 5 1 0
fd X n

c .        

3.1. The Case Where 

1 2 3 4 5 6           

Proposition 2 If 1 2 3 4 5 6         

 32 1k
, then  

X has the rational homotopy type (r.h.t) of , with  

   3 2 1k fd X  *k  and .  
Proof. Since 1 2 3   1 2 3, ,a a a V, then   . We 

distinguish two cases:  
1) 1  is odd. Then . Let E be the 

vector space spanned by 

2 2 2
1 2 3 0    

1 3 2, ,1 2 3      . 
 If dim 3E  , we can take 1 2 1 3 2 3 , ,       as a 

basis of E. Let  1, , nb b  an homogeneous basis of a 
complement of  1 2 3, ,a a a  in V with  1 n   
and 

b b
 1 2 3, ,a a a , therefore 1 0db   and  2db 

         *
1 2 3 1, , ,a a a b H V d    , what im- 

plies that  *dim , 9H V d  . So the minimal model 

of X is    with dai = 0 and 1 2 3, , ,a a a d 2 1ia k 

 32 1k
1 d

.  

This is exactly the minimal model of . 

 If im 2E  , the there exist 1 2,    such 
that 2 3 01 1 2 2 1 3       
da a a a a

 , and then  

4 1 1 2 2 1 2 33 a a    . According to the Poin-
car duality, we have 1 2 3     , so 1 4d a a   
a a a  and 1 2 3  1 2 3 0a a a   . This is impossible.  

2)  fd X  and  is even. Then  are odd, be- 1 4
cause that       41 1 3 1 0

fd X

c

 . Therefore        
2 2 2

1 1 0        1 2 3 2 3 2 3     
ib V

, and there exist 
tree generators  of   with even degrees such that 

2
i idb a 1 3i ,  . Then  

 4 1 4 1even
3 3 3 6 3 2 1iai

a a b a a fd X       . 
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This is impossible.  

re 3.2. The Case Whe

1 2 3 4 5 6          

Lemma 3 If 1 2 3 4 65          , then 
 fd X  and 3  are even, 1  is odd, and 1 2 0   .  
Proof. First,  of the r dualit e have because  Poinca y, w
  1 6 3X 2fd     ev    is en, and 1 , 6  hav

 
e  

the same parity. Hence  1 32 4 1 1c0 2
       ,  

1  is odd and 3  is eve
(By contradiction) Suppo

n. 
at 1 2 0se now th    , sinc

2  herwise, the 
Po

e 
2 0   the  , 1a i  1 2 n 4i V . Ot

incar duality let us to suppose that 1 6 2 5       
and to conclude that 5 6, , 1 4ia a a i    and that 

5 6,a a  are also generators of 


 ,V d . So 

   
2 5 6

4 2 1.fd X fd X

1odd iai
a   

  
 

This is impossible (QED).  

  

Lemma 4 If 1 2 3 4 5 6          ,
 ge tor b of V ,

 *

 then 
there exists an homogeneous nera

 
 satis-

fying 2
4 1 2 4db a a a a  , where  .  

Proof. Since 01 2   , we can assume that 3a a 1 2a   
and th at 4a V , then 3 4 1 2 4a a      . Ot  


herwise

2
4 1a a   , then there exists an homogeneous 

generator , such 4 1 2 4db a a a a .  
Lemma 5 If 

2 4  
 of V

a a
b 2  

1 2 3 4 5 6          , then 
    , , ,V d x y   1x

*  ,  

2 3, ,x D  with:  
0Dy  ,  

2   e 
 1 2Dx Dx 
 Dy y 1 2x x y  wher
 1 2 1x x a  et   4y a . 

  * *, ,


Proof. We have H V H d
 ,W x y . We define the 

W D  where 
  algebra homo1 2 3, ,x x morph- 

   : , ,W D V d    as 1 1


ism    x a ,    2 2x a ,  

 3x b  and     4y a  .  is into because it trans-
form 3s the basis  1 2, , ,x x x y


 of W on  linearly 

independent family 1 2 4, , ,a a a b
 a

 . Let 
the 
 W  and 

0 1V V V  , since  * *, ,
0


V 
 0H V d d  then 

 1 \ 0dV V V   . Assume tha  and con-
that 

H
t 1V 

V
01 0

1c Vsider  such  min 0x  , then 

1 2dc b
1,x V,c x

  
db

 wh 1 2 1 2, ,a a   
2 2

1 2 40 d c      0
er

1 2
e 

a
4, a . As 

n 1 4 a a a , the   . We 

n is case 
have to discuss two cases: 
 1 1dc a   2 2 4 ; 2a a n  . In th  

  12 1 1c n a  and e     therefor

 

 
1 1

1

4 2 1

9 2 > .

c a n a

a fd X

  

 

even
2iai

a b  
 

This is impossible. 
, 1ma a a m  dc 3 1 2 4 . In this case,   12 3 1c m a    

and 1 0d a c  , then    1 1> 5 1 >a c a fd X , and so 
 1 0a c  . Let 1 k V     , such 1d a c    

where  i
i V  and  1 12 2m   odd, 

in particular. But 1

3 a   is 
0  , because if not we will have  

 

 
1 2 1odd

1

4 7 3

11 3 > 2 1.

iai
a a a m a

a fd X

      

  

1c
 

This is impossible.  
Proposition 6 If 1 2 3 4 5 6         , 

then X have one of the following r.h.t:  
 



2n n n    , where n is odd and   4fd X n .  
    

2 2   42 , where n is odd and #n n n n     fd X n . 
Proof. Let us recall that  fd X  and 4  are even, 
d than at 1  and 6  are odd. 

 2 0First case: 4  . Since 1 1 2 4    d 0 an 1  , 
then 1 4 0    and 2 4 0  Hence  .  
 ,1 4 1 1 4 2 41, , , , , ,2 2 1 2 4       is a basis for     

 * ;H X  , and therefore  
     * 2 2 2; , , , ,H X a b c a b c  , i.e., X has the 

r.h.t of 2n n n    . 
 Second case: 2

4 0  . He 1 4re    and 2 4   are 
both non null, because i

a
n the opposite case we will 

have 1 4a db  or 2 4a a db  where b is a genera-
tor of V , and in this cases  

 1 2 5 6odd
> 2 1

i ia
a a a a a fd X     . This is 

impossible. Recap 2 2
1 2 0   , 1 2 0   , 4 0  , 

1 4 0   , 4 4 0   , this leads us to conclude that X 
have the r.h.t of  2 2#n n n    

3.3. The Case Wher

 2
n .  

e 

1 2 5 63 4         

Proposition 7 If 1 2 3 4 5 6          and 
if 


 d X  is even, then X have the r.h.t of 2 1kf   

 22 1 k pk       2 1 2  with fd X k k p    .  
of the parity of  Proof. Because fd X , the dual

incar an
ity of 

Po d the fact that 0c  , then 1  and 3  
ly oddare respective  and even, so 2 2

1 2 0   . Assume 
that 2 2 0    and that 5 6 1 2 3 4, , , ,      , then 
there exist 


 1 2 1 2 3 4, ,i iP P , ,   such   

1 1 2 2
i i

i P P
  that

     for 5,6i  . This imp  impossi-
ble s hat 1

lies the
ituation t 2 0i i       , but also th

mption is false. Thus ne a  are 
h generators o

at our 
second assu cessarily 5 6,a

f Vbot   and that  

   1 2 5 6odd
2 > 2 1

i
ia

a a a a a fd X fd X      .  

This another impo le situation issib mplies that our first 
assumption is also false. Put 1 3 0   , in this case 
   , ,a a a a3 4 1 2   , in particular ja  are genera-
tors of V  for 3,4j  . The Poincar duality let us to 
write 1 2 1 2j ja a a        an conclude that 

1 j

d to 
0  and that 2 0j       and finally to write 

5 1 , 26j   j   . 
rity of the degree, then 

with da

Recall that 2 0j  , because of 
the pa     , , , , ,V d a b c x d    

0db dc   2c . This is the mini-
 o  22 1 k pk  

 and dx
mal model f 2 1k   .   
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 Proposition 8 If 1 62 3 4 5        
  

  
and if

d X  is even, then x have one the r.h.t f  
 

 of
fd X  is odd,  has on

 21 k p  with  
 2

 then X e of following r.h.t:  
 2 1 2k k  

   2 1fd X k  
  

k p ,  
 

4 2 1n p  , 

2 12 2 n pn     with  
2d

n 

 fd X n 
 2 2n n  

   
 2 1n p   with   

 4 2 1n p 
will d ses: 

First case: 

 fd X n 
Proof. We 

,  
iscuss three ca

 1  is odd, then 5  is even. Suppose 
at th evenV   5 , then 

 fd X . This is 3 5 1 5ia a a a a     evenia
impossible. So  3 4 1 2, ,      with 1 2 0    
and ja  is an odd degree g ator of Vener   for 

3  or 4j  . A same juj  stification as in the last 
proof let us to c at 5 1onclude th j   , 6 2 j    
and that X have the r.h.t of  22 1 2 1 k pk k      . 

 Second case: 1  is even and 1 2 0   . Since 5  
is odd, then  2 2

1 2 1 2dim , , 1     . Ass me for 
example that 2

1 0  , the
u

n 2
1 j    with j 3  

or 4 and j  is odd. Therefore 1 0j   . Let sup-
pose that 1 2,j j  ar and write 2 =j   are colline    

1 j  , then 2
2 2 1= = 0j j     , so odd

5a V . 
Since that 1 2 = 0   and that 2 2

1 2=  , then there 
exist two odd degree generators of V , b and c  
that 1 2=db a a  2 2

1 2a
, such

and =dc a  . We conclude that  

 
   

5 5 1odd

1

2 2 1

2 1 1 > 2 1

i i j ja
a a a b c a a a

fd X a fd X

       

   


 



(impossible). Put 1 6=j    and 2 5=j   , then 
2 2
1 2= =j j      and 2 2 01 20,   . The minimal 

model of X will be of the form  
   1 2 1, ,V d a a d    wi 1 2 0a2 3, , , ,b th b b da d  , 

1 1 2
2

2 2 1adb a a , db 2a  , 3 0db   and 1 2a n ,  

 2b n   2 2n n1p  , i.e., X  2 1n p

2d
     

 d case: 

. 

Thir 1  is even and 1 2 0  s in th
case, 2,

 . A e 
first  we can write 5 1 6j j  

2 2
1 2, ,   2

    . Sin  ce
  1 2 1, thendim  1 1 1 2    and 2

2  

2 1 2   . Suppose that 1 0   and write 3
1a da ,  

2 3
1 0  ), then 1 1a a 1 2a  (  1

1

d a a b


 
 

, i.e.,  

= 0

1 

1 2  . That contradicts the main hypothesis in our 
third case. model of X wil

 , , , ,b b b d  with  
Hence the minimal l be of 

the form    1 2, ,V d a a  
1 2da da

1 2

0db  , 2
1 1db a , 2

2 2db a , i.e.,  
 2 12 2 n pn nX       . 

re3.4. The Case Whe  

1 2 3 4 5 6         

Proposition 9 If 1

   . 

f. As 

2
2 12 n pn    

Proo  fd X  is even and = 0c , then  and 1

2 3 4 5 6          and 

2  are respect en and odd. Suppose (by contra-
diction) that 1 2

ively ev
    or 1 3   is null (for example 1 2 = 0  ). 

Th f Poin at  a V ,e duality o car insures th 4 5, a   then 
 2 3 4 5odd

> 2 1iai
a a a a a fd X     . This is 

impossible D). t 4 1 2=(QE Pu    , 5 1= 3  n 

2 3 0
 , the

   , because that 1 2 3=    . Th  us to 

6 2 3

is leads
take =    and to conclude that 2

1 = 0 . Hence 
      with = =dy d

2=dy x  
1 2, , , , ,V d x y y y d   1 2 = 0dx y , 

and = 2x n ,   1 2 2 1n p  ,  i.e. ,  


= =y y
 2

1p  .  

a 10 If 

22 nnX  
Lemm 1 2 3 4 5 6    and       

 d X  is odd, then 5, =a V  .  
Let us suppose 4a V

4a


f
 (for example) and discuss two 

ca
 

ses: 

4 4

erator 7a  of 
a  2 = 0  and th  exists a gen-

V
 is even, then ere

  such that 2
7 4=da a . If 1a  is odd, 

then  > 2 1a a a a a fd X     1 2 3 7odd iai
, 

impossible. Then 1a  is even and necessary  
 2

1 2 3dim , 1    , i.e., there exists a generator 8a  
of V  verifying 2=da a a a   with 8 1 1 2 2 3 1 = 0  
or 2 = 0 . Consequently  

   

3 7 8

7 8

2 4 1

2 4

2 2 1 2 1

2 1 2 1,

a a

a a a

a a fd X



    

    

2odd

2 3

iai
a a a a a

a a

   

  



 

what is, once again, an impossible situation. 
 4a  is odd, because of the Poincar duality, we must 

have 2 2 3 3 4

9a V
a  be even and  dim , = 1    . Let 

  such that 9 1 2 4 2 3 4=da a a a a  , then  

 
9 2

4

a

fd X

2 3 2 4even

2

2 1

.

iai
a a a a a a

a a

      

 


 

This is impossible.  
Lemma 11 If 1 2 3 4 5 6         d  an
 fd X  is odd, then 0  and 1 3 01 2     .  
P ion) Assume, for example, that roof. (By contradict

1 2 = 0  . By the ity of 
r, we have 

 precedent lemma and the dual
Poinca    4 5 3 2 51 2,a a a  , ,a a   and 0 ,  

3 4 0   . Therefore  2 2
5 2 3 2 3, ,     , but  fd X  

en 5 2 3is odd, th     and 2
2 5 2 3= = 0      . 

This is a contradict
sition 12 If 

ion (QED).  
Propo 1 5 6 2 3 4          

and  fd X  is n x ha  
r.h.t: 

odd, the ve one of the following

 2 1n k k      with
 

 2 2k n  , 
2 1n Y

  , where *   and Y  have a minimal 
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model of the form   , ,u v d  with , ,a b 0da db  , 
du  ab , 2 2dv b a  .  

Proof. By the two last lemmas, we have 1  is odd 
and    1, ,0 ,V d a V d     ith  2 3,a a V   w  . 

 *dim , = 4H V d (case claBut 
tho

  ssified by the first au- 
r in his thesis), then 1nX Y   where 1 2n nY     

and 2 1 1n n   or Y Y
 , , ,d a b u v 

 wh
,

ere  
 V d  and = = 0da db , =du ab , 

2 2=dv b a
,

 . 

3.5. Case Where 

1 2 3 4 5 6          

Lemma 13 If 1 2 3 4 5 6          , then 
 4 1 2,a a a .  

 3 4,a a V , then there exist two 
 of V  satisfying  

 3 1 2,a a a  or 
Proof. Suppose that 

generators 7a  a

2 5a a
nd 8a

a7 3 4=da a     and 8 1da 1 3 2 1 4= a a a a   with 
3V . We distinguish two cases: 

 First cas


e: 3  is   even, then 1  is odd. As  fd X  
 and is even = 0c , then 8  is even and conse-
 quently  > fd X . 3 4 8eve iai

a a a a   n

 Second case: 3  is odd. As  fd X  is even an  
= 0c

d
 , then 8a  is even and  

 a a a a fd X   3 4 8even iai

The two cases are both impossible.  
Lemma 14 If 

 . 

1 2 3 4 5 6       , then:  
1) 2 = 0 ,  

 
1

)  2  
  ,  

3 4 1 2,a a a a   ,  
3)  3 4,a a V
4) *

5 1 4   *
6 2 4  and    .  

of. 1Pro = 0) suppose that 2
1 , then 1  is even. Since 

 fd X   is even and =c 0 , then 2 , 3  and 5  
ar oe b t 6 =th odd. Pu 2

1  , then ,a a a V    2 , ,a 3 4 4

d an  2 3 4 5odd
> 1iai

a a a a d X     (con-  

tradiction). 

2 fa

2) We have    2 2
2, ,a a a a a3 4  1   . If 2  is 

even, then 3  is odd and  3 4  1 2a a ,a a  . If 

2  is odd, th hat 2e result is evident 
diate consequenc

because t
e of 2

2 = 0 . 
). H we 3) It is an imme ence can 

take 2
6 1=  nd  2 3 4 5, ,a a a

 Since 2 2 2
3 1 2= = 0   , then there exis *

 a  odd,a V . 
ts    4)

such that 3 4 =   . So 1 4 0   , 2 4 0    and 
*

5 1 4   ,  6
*

2 4  
n 15 If 

 . 
Propositio 1 2 3 4 5 6       , 

then X have f 22 n kn

  
 12 1k  


 the h.r.t o     or th at of 

 2 1n kn k  .  2 1 2

2d
   

Proof. Put 5 1 4=   , 6 2 4=    and 2
2 1 2 4=   , 

2 =4 2 1 2 4     X have one , then the m
wing forms: 

i

 

nimal model of 
of the follo
    1 2 3

2
1=dy x

, ,V d  ith  , , ,y y y d  w
0 ,  and 

x
1 1 2dx dy dy  1 = 2x n ,  

1y = 2 1k  ,  2 = 2 1y k n  , i.e.,  
 2 12 2 1 n kn kX       . 

    1 2, , ,V d x y  
dx dy

3, ,y y d  with  

1 1 2 0dy
 

   , 2
3 1 2=dy x y y  and 1 = 2x k , 

1 = 2 1y n  ,  2 1n  , i.e.,  
2n k  

= 2y k
 2 12 1n kX     

3.6. Case Where 

2d .  

1 2 3 4 6 5        

Lemma 16 If 

 

1 2 3 4 5 6         , then 
 5 1 2 3 4, , ,a a a a a .  

Proof. Let 5a V  and discuss many cases: 
1) evena V , then there exist two generators x and y 5

of V  such that  2 5 3 4=dx a a a a  and 2
5=dy a

a) 2a  is odd, then  

>a a a a fd X   1 2 6 9i  evenai
a . 

b)  fd X  is e = 0cven and  2  is even. As a , then 
1a  od d   is d, even

1a V  an

 odd
> 2 1iai

a x y fd X   . 

a 
a
2) odd

5 V . 
) 2a  is  necessaodd, then ry odd

2a V  and 2 5 =   

3 4 =   . Hence there exists a generator x o Vf   such 
that 2 5 3 4=dx a a a a . 

even
1a V then i) , 3a  and 2a  are both odd since 

0 . Since 3 4 0    then ja V for j  
th 5 = 0j

=c
odd  = 3  or

= 4j  wi   . Hence there exists a generat  
of V

or y
  su 5jach that =dy a  and so  

 odd
> 1iai

a x y fd X  2 . 

od
1a V oddii) d , then x V  and  

 1 2 3odd
1iai

a fd X  | |> 2a a a x   . 

b) 2a  is even. 
even

2  ecessar even  and  i) a V , then n y x V

 2even
>iai

a a x fd X  . 

2a 2 0 ii) 2
1= a , then 1 5   (because of the Poincar 

duality) and 1 5 0   . Put 6 1a then ja5= a a , oddV  
for = 3j  or = 4j  ( = 0c ) and 5 0j =   (Poincar 
duality). Let x be a generator of V  such t at 

5jdx a , the
h

= a n  

   
odd

52 1 2 1

ai

j

a a a x

a a fd X

 

  


 

5

> .

i j



Lemma 17 If 1 2 3 4 5 6         , then 
 6 1 2 3 4, , ,a a a a a .  

Proof. Let 6a V  and discuss many cases: 
1) even

6a V . Then there exist generators 7a , 8a  of 

Copyright © 2012 SciRes.                                                                                 APM 
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V  such that d a
a) 

7 1= a  and 2
8 6=da a . 6 3 4a a a

1a  is even, then  

 

   
odd

1

2 1 2 1.

iai

fd X a fd X 
 

7 8 6

6

1 2

1 >

a a fd X a

  

a     

b) 1a  is odd, then  

 6 7even
>iai

a a a fd X  . 

odd
6a V
2a 

2) . 
a) evenV , then  

 2 9 >a fd X

odd
2a V hen  

even iai
a a  . 

b) , t

 9 > 2 1fd X  . 1 2 6odd iai
a a a a a   

Lemma 18 If 1 2 3 4 5 6          , then 
 1 2 32 , , , 3a a a  .  

  
 

4a V 

Proof. Put 1 2 3 4= , , ,N a a a a V . 
  i ia a  for all = 1, ,6i 

m 0
1) If = 1N , th , this 

c

en
plies the contradiction i   . 

f 1 6= =2) I  = 4N . We have 3 4     . 
a) 3a  and 4a  are bot  th  h even, en fd X  is even 

an = 0 and rators ofd 2
4 et 7a  some gen  V. L 8a  be e   

with 7 1 6 3 4=da a a a a  an 2=d da8 4a   , therefore

  . 7 8odd
> 2iai

a fd X
b)

1a a 

 3a  and 4a  are both odd, then  fd X  is 

and 

odd  

    1 2= 2 1 = 0
a a

c   , so 1 1  (for example) 

is odd and  

 7iai
X   1 3 4odd

> 2 1a a a a a fd  . 

c) 3a  is even and 4a  is od  exd (for ample), then  

 3 7even
>iai

a a a fd X  . 

Lemma 19 If 1 2 3 4 5 6          d  an
if  1 2 3 4, ,a a a a V   then 1a  and , 2 , ja  have dif-
ferent  4,a a V . 

Proof. 1

 parities where ja a
 Suppose that a

2 3= ,
 and 

 

ja  have th e par-
ity

e sam
. 
1) If 1a  and ja  are both even, then all ia  are 

even for = 1, ,6i   and 0c  . 
2) If 1a  and ja  are odd, then necessary 2=ja a  and 

 3 , 4 1 2      (because that    2, ,a a  ), but 
pos  

3 4a a 1

sible. 
Propos If 

this is im
ition 20 1 2 3 4 5 6           

and if  1 2 3 4, , , 2a a V  , then  
1

3
n mXa a 2 

 1= ,
   .  

3 4, , ,Proof. Put  1 2 ja

he fact that 

a a a V e the 

duality of Poincar, t

a a . Becaus  

1a , ja  have different  

an i ja a  for all parities  1, a
= 1,i 

d the fact that 
. Let  1,,6 ja a a  such that a  is odd   and

 1,k ja a aa    , it is evident that ka  is even. As 
   * , = , , = ,1m n

kH V d n m    then 7 =k k0 ,     

7 =    . This allows us to take  
   1, ,p pa a a a  bec7 7 k k k    w= a ith = 3p , ause if not 

  8d*dim ,H V  . Hence 4 = 0k  and 0n
k   . Con-

clude that     0 ,a W d   , that evendim =1V  , ,V d 
and that  m , = 4H W d . In [?   ,W d  

d l of n , then (3)X

*di ],   is the
minimal mo e (3)

2 1n m  where  
= kn a  and 2m 

 21 If 
1 = a .  

Lemma 1 2 3 4 5 6       and 
if 

  
 1 2, ,a a 3 4, 3a a V  , the ong

at 

n only one am  3a  or 

4a  is in V.  
Proof. Assume th  3 4,a a V , then 1a  and 2a  

at nar ause th ecessary 2
2 1a a . T

 
e both even, bec here-  

fore      33 1 = 0
a  , i.e., = 1 1

fd X

c    fd X  is  

d, and thereod nerator 7a , s hat exists a ge  of V uch t  

7 3 4 1 6=da a a a a  with  

 3 7even iai
  >a a a fd X . 

Lemma 22 If 1 2 3 4 5 6           and 
if  1 2 3 4, , , 3a a a a V  , then a a a  ere  1 2=j wh

 3 4= ,ja a a V .  
Proof. Suppose 1 2 = 0  , we know, fro

of Poi 1 6 2 5= =
m the duality 

ncar, that       and by the Lemmas 
16 and 17 that  5 6 2, , , 1 ja a a e deduce that a a  . W

 5 2 , ja a a ,  6 1 6,a a a  and  that 

 2 ja a  w

, then 6 1=

2 2
1 2 1, ,k ja a a a here  = 3,4k j . 

1) If 2
1ka a

, a

ja a a  and  
 2

5 2 2, ja a a a . As 5 6a a , then 2
5 2a a , and so 

ia  is even for all = 1, ,i  implies that 
0c

6 , but this 
  . 

2
2ka a ecessary 2  and  

2
2 =j k j

2) If , then n 1 = 0
=     . H  ence 2= 2 jfd X a  and 

2

a 
5 ja a a , 2

6 ja a . Since ja  and 2a  are both even, 
 then   1 6=fd X a a  and 6 = 2 ja a . So ia  is even 

 ifo = 1, ,6 o the contradiction 

c

r all , but this leads t
0  . 

3) If 1k ja a a , 0then 2
1 =  and =j

2
1   . Sup-

pose that 2 d discuss o case . 
a) 2 1

 2 = 0  an  tw s
2

ja a n a , the 1a , 2a  and 3a  are even 
and c 0  . 

 , theb) 2 5a a n 2   2= 3fd X a  is even, but also 
  1 6 1= = 2 jfd X a a , then a a 1a  There- 

fore 
is even. 

i is even ca   for all = 1, ,6i  and  0 
f 1k ja a

. 
4) I a , then = = 0  an

2

2 2
1 2  d  

2= =jj k       (P ). Hence 5oincar duality 2
ja a , 

3
6 ja a  and    2= 12 = 3j jfd X a a a . So  a 

1 2= <j ja a a .  a

tion 23 Proposi If 1 2 3 4 5 6        
and if 

 
 1 2 3V3 4, , ,a a a a   , then X have on  
 r.h.t: 

2 1p

e of the
following
 E: the total space of the fiber bundle with    
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2 1q  as base sp
n n

1, 2n  and 3n  are both even. 
 y e pre

=

ace, 
 31 2     wher  

Proof. cedent lemmas and by the 
Poincar duality 1 2 =j

n

We know b
e n
 th

that k j      . Put 5 1= ka a a  
dan  6 2= ja a a , then 1 = 0  and 2 1=2 2

j   . W  
distinguish two cases: 

1) 0

e

  , then 1a  and ja  are both odd because 
that 0c  . Replace 1a  by 1a  and put = 1 , then 
the minimal model of X is of the form  

  , ,1 2, ,x y y y d  with 1 22 1 = 2 =x y  
2 1q   and 2

1 2=dy x y y ce X ~ 2n   
2 1 2 1

= < <y p n
. Hen ere  E wh

p qE    is a   fibratio f the KS-complex n o

  
 
   

 
1 2 1, ,0 , ,

.

y y y y x y 

 

= 0

2 ,

, ,

d

x y d

 
 

2)  , the he minimal model  


n X have t
 1 2, , , ,x y y y d

31 2 nn n
  with 1 2= = 0dy dy  and 2=dy x , i.e., 
X    with    1, 3n  are both eve
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