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Abstract 
 
In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of 
bacterial chemotaxis model of fractional order in a semi-solid medium. The fractional derivatives are de- 
scribed in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear 
fractional differential equations. 
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1. Introduction and Preliminaries 
 
This paper deals with numerical solutions of bacterial 
chemotaxis model of fractional order in a semi-solid me- 
dium. We are primarily interested in describing the be- 
haviour of the generalized biological mechanisms that 
govern the bacterial pattern formation processes in the 
experiments of Budrene and Berg [1] for populations of 
E. coli. The model for the semi-solid medium experiment 
with E. coli is considered. The key players in this paper 
seem to be the bacteria, the chemoattractant (aspartate) 
and the stimulant (succinate) so the three variables is 
considered: the cell density u, the chemoattractant con- 
centration v, and the stimulant concentration w. The bac- 
teria diffuse, move chemotactically up gradients of the 
chemoattractant, proliferate and become non-motile. The 
non-motile cells can be thought of as dead, for the pur- 
pose of the model. The chemoattractant diffuses, and is 
produced and ingested by the bacteria while the stimu- 
lant diffuses and is consumed by the bacteria. The model 
consisting of three conservation equations is: 
 

Rate of change of 
cell density, u 

= 
Diffusion of 

u 
+

Chemotaxis 
of u to v 

+ 
Proliferation 
(growth and 
death) of u

Rate of change of 
chemoattratant 
concentration, v 

= 
Diffusion of 

v 
+

Production of 
v by u 

– 
Uptake of v 

by u 

Rate of change of 
stimulant 

concentration, w 
= 

Diffusion of 
w 

–
Uptake of w 

by u 
  

In recent years, fractional calculus starts to attract 
much more attention of physicists and mathematicians. It 
was found that various; especially interdisciplinary ap- 
plications can be elegantly modeled with the help of the 
fractional derivatives. Other authors have demonstrated 
applications of fractional derivatives in the areas of elec- 
trochemical processes [2,3], dielectric polarization [4], 
colored noise [5], viscoelastic materials [6-9] and chaos 
[10]. Mainardi [11] and Rossikhin and Shitikova [12] 
presented survey of the application of fractional deriva- 
tives, in general to solid mechanics, and in particular to 
modeling of viscoelastic damping. Magin [13-15] pre- 
sented a three part critical review of applications of frac- 
tional calculus in bioengineering. Applications of frac- 
tional derivatives in other fields and related mathematical 
tools and techniques could be found in [16-18]. Rida et 
al. presented a new solutions of some bio-mathematical 
models of fractional order [19-24]. 

In this paper, we implemented the Adomian’s decom- 
position method (ADM) [25,26] to the generalized bacte- 
rial pattern formation models in a semi-solid medium:  
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where 0 1  ,
concentration 
respectively. There 

alues ( ,u v
del. 

,u v
of the chem

are 
, w a

 and  are the cell density, the 
actant and of the stimulant 

three diffusion coefficients, three 
initial v  and nine parameters  
the mo

Subject to initial conditions: 

 and 

where  and are the cell density, the concentratio
oattractant and of 

stems of E in
 the first time derivative term by a fractional 

de

w
oattr

0)t t  k  in

n 

0( ,0) ( )u u   , 0( ,0) ( )v v   0( ,0) ( )w w    

,u v
hem

w  

al sy

of the c the stimulant respectively. 
There are three diffusion coefficients, three initial values 
( , , at 0)u v w t   and nine parameters k  in the model. 

The fraction quations (1.1) are obta ed 
by replacing

rivative of order 0  . The Derivatives are under- 
stood in the Caputo sense. The g
sion contains a parameter desc he order of the 

al tiv

eneral response expres- 
ribing t

fraction deriva e that can be varied to obtain various 
responses.  

In the case of 1  , the fractional system equations 
ndard system of partia differential equreduce to the sta l a- 

tio

ntial 

des in any symbolic languages. The method 
pr  in the

, the 
fu

tion of the method is extended for fractional differential 
equations [30-33]. 

n of differentiation to fractional orders e.g. Rie- 
m

ions for fractional order differential 
eq

me form as for integer 
rder differential equations. 

 derivative of 

ns. The Adomian’s decomposition method will be 
applied for computing solutions to the systems of frac- 
tional partial differe equations considered in this 
paper. This method has been used to obtain approximate 
solutions of a large class of linear or nonlinear differen- 
tial equations. It is also quite straightforward to write 
computer co

ovides solutions  form of power series with easily 
computed terms. It has many advantages over the classi- 
cal techniques mainly; it provides efficient numerical 
solutions with high accuracy, minimal calculations. 

The reason of using fractional order differential equa- 
tions (FOD) is that FOD are naturally related to systems 
with memory which exists in most biological systems. 
Also they are closely related to fractals which are abun- 
dant in biological systems. The results derived of the 
fractional system (1.1) are of a more general nature. Re- 
spectively, solutions to the fractional reaction-diffusion 
equations spread at a faster rate than the classical diffu- 
sion equation, and may exhibit asymmetry. However

ndamental solutions of these equations still exhibit use- 
ful scaling properties that make them attractive for appli- 
cations. 

Cherruault [27] proposed a new definition of the me- 
thod and he then insisted that it would become possible 
to prove the convergence of the decomposition method. 
Cherruault and Adomian [28] proposed a new conver- 
gence series. A new approach of the decomposition me- 
thod was obtained in a more natural way than was given 
in the classical presentation [29]. Recently, the applica- 

There are several approaches to the generalization of 
the notio

ann-Liouville, GruÖnwald-Letnikow, Caputo and Ge- 
neralized Functions approach [34]. Riemann-Liouville 
fractional derivative is mostly used by mathematicians 
but this approach is not suitable for real world physical 
problems since it requires the definition of fractional 
order initial conditions, which have no physically mean- 
ingful explanation yet. Caputo introduced an alternative 
definition, which has the advantage of defining integer 
order initial condit

uations [34]. Unlike the Riemann-Liouville approach, 
which derives its definition from repeated integration, 
the GruÖnwald-Letnikow formulation approaches the 
problem from the derivative side. This approach is most- 
ly used in numerical algorithms. 
 
2. Fractional Calculus 
 
Here, we mention the basic definitions of the Caputo 
fractional-order integration and differentiation, which are 
used in the up coming paper and play the most important 
role in the theory of differential and integral equation of 
fractional order.  

The main advantages of Caputo’s approach are the ini- 
tial conditions for fractional differential equations with 
Caputo derivatives take on the sa
o

Definition 2.1 The fractional ( )f x  in 
e Caputo sense is defined as [34]: th
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Definition 2.2 For to be the smallest integer that 
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0   is defined as [34]: 
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3.

To giv olution of nonlinear fractional-
order differential equations by means of the ADM, we 
write the systems in the form 

  (3.1) 

e fractional operators, 
nd  nonlinear operators.  

 Analysis of the Method 
 

e the approximate s

1
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1 1 1 2 1
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
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where ( 1,2, , )iD i m    are th
a 1 2

Applying the inverse operators 1 2, , ,
, , mN N N  are

MI I I    to 
the systems (3.1)  

1 




  (3.2) 

     (3.3) 

d suggests that
are decomposed by an infinite se-

ries of com

 

and the nonlinear operators are defined by the infinite 
series of the so called Adomian polynomials 
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Subject to the initial conditions 

) ( ), ( 1,2, , )ig i m      ( ,0iu 

The Adomian decomposition metho  the 
linear terms ( ,u t )i  
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,
0

( , ) ( , ), ( 1, 2, , )i i n
n

u t u t i m




        (3.4) 
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     (3.5) 

here , ( , )i nu t ; 0n   are the components of ( , )iu t , 
that will be elegantly determined, and ,i nA ; 0n   are 
Adomian’s polynomials that can be generated 
forms of non linearity [35]. Substituting (3.4) and (3.5) 
into (3.2) gives 





ed into a set of recursive relations given 
by 

for all 
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Following adomian analysis, the nonlinear system 
(3.1) is transform
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where ( 1, 2, , )i m  . 
It is an essential feature of the decomposition m

that the zeroth components  are defined always 
by all terms that arise from  integrat- 
ing the inhomogeneous term aining pairs 

can be easily determined in a parallel man- 

omponents of , the solutions of the 
me  of a power series 

expansion upon using (3.4). es obtain
any cases to closed form solution 

 problem the  approximants can be 
us

qualitative 

work, s

ethod 

,0 ( , )iu t
 initial data and from

s. The rem

( , )iu t
diately in the form

The seri
give a 

n  term

,i n

r. Additional pairs for the decomposition series nor- 
mally account for higher accuracy. Have been deter- 
min

( , 1)u n   
ne

ed the c
system follow im

summed up in m
crete

ed can be 

for con s,  
ed for numerical purposes. Comparing the scheme 

presented above with existing techniques such as charac- 
teristics method and Riemann invariants, it is clear that 
the decomposition method introduces a fundamental 

difference in approach, because no assump- 
tions are made. The approach is straightforward and the 
rapid convergence is guaranteed. To give a clear over- 
view of the content of this everal illustrative ex- 
amples have been selected to demonstrate the efficiency 
of the method. 
 
4. Applications and Numerical Results 
 
In order to illustrate the advantages and the accuracy of 
the ADM, we consider time-fractional chemotaxis model 
of bacteria colonies in a semi-solid medium (1.1) in one 
dimensional in the form: 

2
1 4
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Subject to the initial conditions 

u x 0( ,0) n  

2
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0( ,0)w x s  

where 0 0, , ,n s 
Operating with 

 are constants. 
I  in both sides of system (4.2) we 

find 
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The ADM assumes a series solution for 
and  given by: 

Substituting the decomposition series (4.4) into (4.3) 
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( , )u x t , ( ,v x

and 
into (4.4) gives the solution 

 in a series form

       (4.12) 

See Figure 1 and Table 1. 
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Figure 1. The Numerica u
 

ity of the active bacteria in a sem . 

α = 1 α

l results (x,t). 

Table 1. Dens i-solid medium

x  = 0.99 α = 0.95 

–10 1.7620E+00 1.7078E+00 1.9998E+00 

–8 4.3328E–01 4.7356E–01 

–6 9.9630E–01 9.9656E–01 9.9515E–01 

9.9997E–01 9.9995E–01 

–2 1.0000E+00 1.0000E+00 1.0000E+00 

0 1.0000E+00 1.0000E+00 1.0000E+00 

2 1.0000E+00 1.0000E+00 1.0000E+00 

4 9.9997E–01 9.9997E–01 9.9995E–01 

6 9.9630E–01 9.9656E–01 9.9515E–01 

8 4.3328E–01 4.7356E–01 2.5642E–01 

10 1.7620E+00 1.7078E+00 1.9998E+00 

2.5642E–01 

–4 9.9997E–01 

 

Figure 2. The movement of bacteria cells u(x,y,t) at α = 1, 
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spreading out itia . B - 
sity ring of bacteria appears at some radius less than the 
radius of the lawn, which is very similar to the experi- 
mental results (Budrene and Berg (1991)). Finally, it 
may be concluded that the decomposition method does 
not change the problem into a convenient one for use of 
linear theory. It therefore provides more realistic solu- 
tions. It provides series solutions which generally con- 
verge very rapidly in real physical problems. Respec- 
tively, the recent appearance of fractional differential 
equations as models in some fields of applied mathema- 
tics makes it necessary to investigate methods of solution 
for such equations (analytical and numerical) and we 
hope that this work is a step in this direction. 
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