7/
o o @ERN) | Scientific
J. Software Engineering & Applications2008, 1: 68-75 \\!'l,’f) Research
Published Online December 2008 in SciRes (www.S@Rfjournal/jsea) i Publishing

Towards Automatic Transformation from UML Model
to FSM Model for Web Applications

Xi Wang, Huaikou Miao, Liang Guo

School of Computer Engineering and Science, Shangaersity, Shanghai, 200072, China
Email: {w_whitecn, hkmiao, glory}@shu.edu.cn

Received November ¥72008; revised November $62008; accepted November3@008.

ABSTRACT

The need for automatic testing of large-scale web applications suggests the use of model-based testing technology.
Among various modeling languages, UML is widely spread and used for its simplicity, understandability and ease of
use. But rigorous analysis for UML model is difficult due to its lack of precise semantics. On the other hand, as a
formal notation, FSM provides an avenue for automatic generation of test cases, but the requirement for mathematical
basis makes itself academic inventions divorced from real applications. This paper proposes an approach to
transforming UML model to FSM model, taking advantage of both languages. As our work focuses on the
transformation of UML state diagrams to FSM models, a specific transformation mechanismis presented, which deals
with different elements with different mapping rules. To illustrate the mechanism we proposed, an example of a web
application for software download is presented. Finally, we give a method for implementation of the mechanism and a
tool prototype to support the method.

Keywords UML Model, FSM Model, Model transformation

1. Introduction

Providing greater assurance that the software isigt Generation of test cases is the main task of ggstin
quality and reliability, testing has been consideneore since detections of faults are operated by comgarin
and more important as people gradually realizegileat expect outputs with actual ones obtained from g
effect on their daily life made by software product these test cases. Model-based testing, which iegolv
Hand-crafted methods are acceptable until the comfn developing and using a model describing the strattu
age when there are full of large-scale manufactui’s and behavioral aspects of the system to generate te
high complexity, especially the appearance of welrases automatically, is an effective method fotirgs
applications ~ which labeled for their additional yarious software artifacts including web applicatioAs
heterogeneity, concurrency and distribution. the models are developed early in the cycle from
Web applications are usually composed of front-endequirements information [1], the generation of tases
user interfaces, back-end servers including webessr -, pe conducted in parallel with the implementati

application servers gnd database servers, whidth bpia o System Under Test (SUT), rather than sequéptial
new way for deploying software applications. Corgyus saving the time supposed to be spent for waitirlgo At

called for supporting task completion of web apgiicns supports re-use in future testing as these modaiaice

by each server may be prog_rammed o dlﬁcerentthe behavior of a software system and in contaat test
languages and executed on different platforms. In

addition, web applications are frequently modiféaece to suite, they are much easier to update if the spation
continuous updates of its components, high—spee(cih"’lmges [2]))
developing technologies and changes of the needts of ~ 1he critical part of model-based testing is the
users. All of these characteristics are challenging Cconstruction of models. Among various modeling
traditional testing method which largely dependstiom languages, UML has been widely spread and used in
testers. On the other hand, most companies keep ttigdustry for its simplicity and ease of use. It lelea
minimum amount of time as their primary priority to modelers to address all the views needed to analyde
meet market demand while customers pay their mucHevelop the corresponding system. Further morea as
attention to the reduction of the cost during neriaince, visual language, it can clearly show the structanel
leading directly to the calls for effective testimgthin @ functions of the system, facilitating understandiugd
relative short period of time. communication between designers, modelers, devedope

Copyright © 2008 SciRes JSEA

Towards Automatic Transformation from UML Model kESM Model for Web Applications

69

and users. Besides, many powerful tools have beesoftware products. But most of the current techgiel®
developed and used to support UML modeling such agre based on “capture/replay” mechanism, whichscost

argoUML. But unfortunately, it is widely acknowlegld)
that UML can hardly provide formal semantics, as it
comprises several different notations with no fdrma
semantics attached to the individual diagrams. dfoee,
it is not possible to apply rigorous automated wsialor
to execute a UML model in order to test its behgvio
short of writing code and performing exhaustivetites
[3].

As one of the formal notations, FSM (Finite State
Machine) provides a significant opportunity for tieg
because it precisely describes what functions diftevare

too much time and manual works while recordingingst
scenarios and handling with small changes on the
functional design or user interfaces. Tools runranghis
mechanism will not design or generate test cases
themselves and will not provide any instruction the
coverage situation of the generated test caseshdfur
more, there are even fewer automatic testing témis
web applications which requires for even more
automatism. Most of the present tools [13] do mupip®rt

the function test of web applications including kin
Checks for checking links of the web applicatiof,\tL
Validators for providing standard HTML syntax

is supposed to provide in a form that can easily b&alidation, Web Functional/Regression Test ToolsbwW

manipulated by automated means [4]. Being appled t
the testing process, its relative theory could ké&fil
and supported for enhancing efficiency. Furthermare
addition to traditional software, a web application
behavior could also be modeled using FSMs theailétic
and then test cases could be automatically genkiate

Site Security Test Tools, Load and Performance Test
Tools and etc. Since most of them rely on inforovati
obtained from codes of the web applications and onl
concentrate on verification of static aspects, weda
tool to help verifying the behavior of them whilaying
least price.

traversing the path through the FSM model of the With the appearance and popularity of the concépt o

application, with each distinct path comprisingilagke
test case [5]. Besides, FSM model can be visualined
tell intuitively the direction to which a test caisegoing,
since state-based specification languages arey faasy

to translate into a specification graph as theyehaatural
graph representations [4]. Last, the transformation
FSM facilitates model checking which verifies certa
property of the model. However, its requirement for
mathematical basis limits the range of utilization.

This paper proposes a method for transformatiom fro
UML model to FSM model, taking advantage of bolte t
simplicity and intelligibility of UML and the accacy
and derivability of FSM. It also enables the reo$¢he
existing and well-established tools for UML anddties
for FSM. There're several kinds of diagrams withiliL
corresponding to different views of the system, mlr
focuses on the transformation of state diagramit &
most often used to model the behavior of an indiaid
object.

The remainder of this article is organized as fafio
Section 2 reviews existing works in transformatioh

object-oriented and model-driven, model-based rgsti
for software products has aroused much attention in
industry. Though many researches are done in i, f
tools developed under their theories still havetater
gaps with applying to real uses due to their ladk o
systematism and low automatic level [14,15,16,1,19B
Construction of models is the beginning of
model-based testing for web applications. The most
common one is to use Entity Relation Diagrams orlUM
Class Diagrams to model web pages of a web apiglicat
and relationships between them. Isakowitz et atriles
web applications with a method called Relationship
Management Methodology [20]. Coda et al proposes a
model WOOM for modeling web applications in a highe
level of abstraction [21]. Gellersen et al introduthe
WebComposition Markup Language for implementing a
model for Web application development called Web
Composition [22]. Conallen et al extend UML modglin
language to model the structure of web applicat[@8%
However, these methods rarely construct modelshen t
behavioral and functional aspects of the web apfitios
and few testing approaches are figured out for ethes

UML models. Section 3 presents a transformatioqmde|s_
mechanism from UML state diagrams to FSM models. 1ha model language we use when designing the web

To illustrate the transformation mechanism, an gdam
of transforming from a state diagram representirgel
application for software download is given in Sewtd.

In section 5, a method for implementing the
transformation mechanism we proposed is given thage
with a brief introduction to a tool prototype basmuthis

applications is UML which strongly supports useos t
describe complicated software including web apfitice.
But till now, no such complete testing tool hasrdwveen
implemented as its semi-formal semantics prevents i
from automatic testing. On the other hand, manyhoux

for generation of test cases from formal models are

method. Finally, concluding remarks and discussiongresented. [24] generates test cases from an Object

about future works are presented in section 6.

2. Related Works

Automatic testing has become a hot spot in thenswé
engineering field for facilitating development pess of

Copyright © 2008 SciRes

Oriented Web Test Model which is a combination of
Object Relation Diagram, Page Navigation Diagram,
Object State Diagram, Block Branch Diagram and
Function Cluster Diagrams, but it will be trappédthere
are too many objects in the software. Ricca et alets

JSEA

70 Towards Automatic TransformatioonfrUML Model to FSM Model for Web Applications

web applications by modeling for each web page and Class diagram, object diagram, use case diagram,
obtain test cases according to proposed ruled, 8til sequence diagram, communication diagram, activity
would only be useful dealing with simple applicato diagram and state diagram are the most commonly use
[5,25], models web applications with FSM which will diagrams in UML. Class and object diagrams model th
then be used for test cases generation by search fgatic design view of a system, mostly about refethips
different path of the model under different criteri pepween objects, while rest of them focus on dygami

Considering that FSM model is also the most COMMORyghects. For the purpose of capturing unexpectelitsy
used object for model checking, we choose it for,

. X e obtain most of the information needed for tegtin
destination of our model transformation process an(¥v

in for test i rom behavioral models.
origin for test cases generation. As one of the behavioral models, state diagranfténo
Formalization of UML models has aroused much

attention in industrv. One of the most active arégithe used to model the life cycle of certain object,nfrits
. Y- . . gresifh motivation to termination. Since most systems ixgol
precise UML group [6], which is made up of

. . . i more than one object, state diagrams are considereel
international researchers who are interested iwigiroy L . : .

. i . . the minimal unit for representing behaviors. Wedfiere
a precise and well-defined semantics for UML, bings

model-oriented notations, such as Z or VDM. Thee a begin our research with UML state diagrams.
also works done by other researchers, Borges d7Jal. 3.2 UML State Diagram

integrate UML class diagrams and a formal spedifica
language OhCircus by written UML elements in teohs
OhCirus. Latella et al. [8] converts UML state dags

State diagram, which has been mainly discussethign t
paper, specifies the sequences of situations atogpes

into the formal language Promela. Traore et al. [gthlrou_gh during its lifetime in response to evetagether
proposes a transformation mechanism from UML stat&v'thI Its q rfesponses to those eyentsf. hMadqy elemerets a
diagrams to PVS which facilitates automatic model!MVO'VED TOr €Xpressing semantics ofthe diagram.
checking. States represent certain situations the object seach

However, few researches on the transformation ¢o thWwith a name for distinguishing itself from otheflhere
FSM model can be found. Erich et al. [11] gives a®'® several types of states within state diagrams. _
hierarchical finite state machine model for statgrams, ~ States that have no substructures are called simple
which is capable of acquiring the hierarchical infation, ~States, others are called composite states. A csitepo
but it does not mention the method for transfororato State may contain nested states either concurrent o
FSM models with the removal of hierarchy. [10] sequential which are called orthogonal substate$ an
transforms time-extended UML state diagram intoetim nonorthogonal substates respectively. Given a set o
automata, but special elements of the state diagnam nonorthogonal substates in the context of an emgos
not under its consideration. composite state called OR-state, the object istsali in

The method we proposed enables the transformation éhe composite state and in only one of those stesstd a
state diagrams with special elements, suctoaspletion time [12]. In the case of orthogonal substatesctireept
transition, fork, join and history state Besides, the ©Of region is introduced which specifies each state
flatness of the resulting FSM model can greatlypsup Mmachine that execute in parallel in the contextthwf
the automation of the generation of test cases. enclosing composite state called AND-state. Onlg on

substate from each of the orthogonal regions ivaets
3. Transformation Mechanism from UML |ong as the object remains in the corresponding AND
State Diagram to FSM Model state.

As UML and FSM are source and target models of the Initial state indicates the default starting pldoe the

introduction of both is given below. the execution of the state machine or the enclosiate
has been completed. Another special state is tterki
3.1 UML state which allows an OR-state to remember the last

The Unified Modeling Language (UML) is becoming a Substate that was active prior to the leaving friva
standard language for specifying, constructing anddR-state.

documenting the artifacts of a software-intensiystem. Transitions are relationships between a pair ofesta
It can model from different perspectives with sever indicating that an object in the first state wiliter the
kinds of diagrams that express static and dynaspeas second state when a specified event occurs undeirce
of a system. As a visualized model, UML conveyscondition. Therefore, a transitidrcomprises three parts:
information intuitively to our human beings who cget source state denoted byc(t) which is the state affected
better understanding through graphics. Besidds,éasy by the transition; target state denoteddsyt) which the
to learn and use, making it more attractive to ¢hakio object enters after the completion of the transitiabel
model. Because of the characteristics mentioned/eabo denoted byEGA(t) which contains events, guards, and
UML severs as the ideal model for describing tte.re actions.

Copyright © 2008 SciRes JSEA

Towards Automatic Transformation from UML Model kESM Model for Web Applications 71

Semantics of transitions varies according to itsre® Different from FSM, HFSM contains states with inner
and target state. When leading out of a composite,sa structures. We could take HFSM as parallel and/or
fired transition leaves the active nested stateforbe hierarchical composition of FSMs with states ofhag
leaving the composite one. When targeting a conosi hierarchy representing FSMs of lower hierarchy. A
sate, a fired transition would lead the objecth® initial definition of HFSM is given bellow according to ghi
state of each nested machine running in parallidr af point of view.

entering the composite state. Definition2. Given a finite set of FSMB = {Aq,.., An}
In addition to these regular transitions, theresiesbme with mutually distinct state spac€gA),

special onesCompletion transitionis a transition with @: Uar Q(A) - P(F) is a composition function dn iff
no event trigger, the fire of which depends on the - OAOF O AOU ran@), which indicates a unique
completion of the behavior within its source state. root FSM denoted by,
Transitionjoin which sources multiple states allows the - OAOU ran@@) * GisOUa or 4 Q(A') « AOQ(S)

object to leave all the orthogonal regions of anDAdtate —O0SOUaceQ(A) » B80S Sn U amps) Q(A) =0.

at one time. Similarly, transitiodork which targets Definition3. Hierarchical finite state machine (HFSM)

multiple states enables passing directly to all thds a pair(F, @) whereF is a set of FSMs with mutually
orthogonal regions of an AND-state. The initialtstaf distinct state spacegis a composition function of.
the regions which have no target states ofadhle will be With the definition of HFSM, the topological struce
activated. of the original state diagram could be obtainedain
With clear semantics of each element, theformal representation, which is specified by the
transformation mechanism which deals with differentcomposition function@ Construction of such structure
elements with different mapping rules can be deitrggth starts from the top hierarchy, and then graduaines to
completion by detailing each composite state tleédriys
3.3 FSM Model to the state diagram level by level. Establlis) = A
Finite State Machines (FSM) are models each biilt e andF = F O {A} if the composite stateis an OR-state
set of states, as well as transitions going from state to with a sub-machine /enclosed, whilgp(s) = {Ay, Ay, ...,
another, which are triggered either by inputs famside A} andF = FO{A}0{A}0...0{A.} if the composite
or changes within the system itself. The executionld states is an AND-state with sub-machinds, A,,..., A,
start from a state called start state and keepimgrumtil each located in the corresponding orthogonal regfan
reaching a state called accept state. As its mattiem The state pointed by initial state turns to bedfaet state
nature, we can establish a formal representatio®f&W of the corresponding FSM, while the state whichnpoat
which is the target model during the transformationfinal state becomes the accept state.
process for facilitating automation. Once the representation for topological structwse i
Definitionl. A FSM (Finite State Machinep is a present, we can get to know the hierarchical whati
quintuple Q, L, J qo, 0), whereQ is a finite set of states between states which can be specified by the falgw
of A, L is a finite set of transition labels 8f J: QxL - function. When given a HFSNKF, @):

Q is the transition function relating two states the X : Uack Q(A) - P (Uacr Q(A))

transition going between thempE€Q is the start state, X (s) ={s | DAOF « Al (s) 0sOQ(A)}

gEQ s the accept state. With hierarchical information represented in
If transitiont € drepresented &S, |, s), thensource(t) mathematic form, the transformation to the resgltin

= s, target(t) = s, label (t) =1. FSM model starts from that of transitions of thegioal

3.4 Transformation from State Diagram to FSM Ztat_e diagram. _But some preliminary conceptionehav
Model e mtr_o_d_uced first. _ _ _

Definition4. A setC O Uaze Q(A) is aconfiguration

As can be seen from the definition of FSM modedfest of a given HFSMF, @) iff

involved are all basic ones, indicating that thmaoeal of [0 SOQ((Prooy * SLIC

hierarchy is needed during the transformation mece -sUC OAOg((s)= LGsOQ(A) « sOC

For the sake of being conformed to the semantics of —sOC OUOS ¢ sOx(s) = sOC

original models, the hierarchical relations betwstates Definition5. Given a HFSMF, @) with C as the set of

of the state diagram should be obtained as criticadll its configurations and as one of its states, function

information for generating corresponding FSM modelconfig: Uagr Q(A) » P Uacr Q(A))

without hierarchy. We therefore take the transtatad config () ={ci|ci0COdlci}

topological structures of state diagrams to matliema Definition6. Given a HFSM (F, @, the default

models of Hierarchical Finite State Machines (HFSid) configuration of certain stated is denoted as a function

a preliminary step towards model transformation thue deconfig Uaor Q(A) — P Uaor Q(A))

the fact that HFSM provides a simple and precisenea deconfig (sd) = X = X : config (sd) «

to illustrate the topological structure of a stdi@gram. Ose (SOX Osdlx*(s) = N g (@(s)) O X)

Copyright © 2008 SciRes JSEA

72 Towards Automatic TransformatioonfrUML Model to FSM Model for Web Applications

Definition7. Given a state diagram with one of its History states are not involved in the algorithme do
transitionst, Uexit is the uppermost one among the statesheir different semantics with other common states;
of the seexit = {exit; | Oj: N = sr¢ (t) Ox*(exit;)) Odst () handle them in a special way.
O x*(exit;))}, Uenter is the uppermost one among the For each history state referring to certain OR-state
states of the seenter = {enter; | Oj: N ¢ srg ()0 Orswith a state sélS composed of all its nonorthogonal
X*(enter;) Otarget; (t) O x*(enter;)}. substates, we build relations of the target stais

States of the resulting FSM model are configuration transitions leading out of stat®©rs with each hs
each represent a set of states of the origina stiagram (hs €HS). Relations, represented by transitions, should
which are active at present. Therefore, transitionde established in pairs, indicating returning te game
involved are running from one configuration to &t state that was last active when leaving the enuipsi
which leads to the fact that each transition of $kete OR-state. Suppose the target state of the transitio
diagram may correspond to several transitions withi leading out ofOrs is Htar, and the label of the transition
target FSM model according to the number ofis denoted af for eachhs (hs €HS), a new transition
configurations the source state of the originahgiton |abeled back (hs)” is created withHtar andhs as its
belongs to. SupposeonfTranSetis the transition set of source and target state. With a transition setinédtaby
the resulting FSM, the algorithm for obtaining #et is the method above, the problem is then turning thi
specified below: transformation from each element of the set to its

for each transition
if EGAY) =0
TempSet £ q (@ (src ()
for each;d] TempSet
config= config (q)
ConfSet f) config
DefConf = deconfig (dst))
iftisa join
for each s src)
config= config (9
ConfSet 91 config
DefConf = deconfig (dst {)
iftisa fork Ol dst ¢)| > 1
ConfSet = config (srt))
defDst %J (deconfig (dst(t)) n X (dst (1))
NdefDst £ (deconfig (dst(t)) \ x* (dst (t)))
DefConf = defDdil NdefDst
else
ConfSet = config (srt){
DefConf = deconfig (dst))
while (ConfSet is not empty)
get a soucont ConfSet
tarconf = (souconfy\ (Uexit ¢)) O
(X (Uenter) n DefConf)
sourcet() = souconf
targett() = tarconf
label{) = EGA ()
confTranSet = confTranSetl {t%
confSet = confSet\{souconf}

counterparts of the resulting FSM model. Meanwhile,
existing transitions of the newly established FSdded
which labeledl should be modified. Supposeis a
transition of the resulting FSM model labelgdthen
label (t) = label €) + s ($Isource {)).

Till now, a FSM model carrying the same semantics
with the original state diagram is constructed and
completed.

4. An Example: Software Download

An example of state diagram is shown in Figure Rictv
models a web application faoftware download The
life cycle of the web application starts from itsim page
(MP), then turns to download or search module atingr
to the choice of users. When entering the download
module, two entities will be triggered: a web pdge
illustrating the usage of the software about to cload
by a video clip, a dialog box for download operatio
According to the transformation mechanism we
proposed, the topological structure of the statgmim
should be captured first by constructing a HFSM etod
The resulting HFSM model can be generated as fatlow
A ({S1,S2,S3,S4} {dlpls 12}, {(SL, 1) -
S2,(S1,4) - S3,(S2,4d) - S4,(S3,4) -
S41,S1,54)
A ({S5,S6},{k},{(S51) - S6}, S5,S6)
Az ({S7,S8,S9}, {&1:},{(S7,ls) - S8, (S8,4)
- S91},S7,599)
Az ({S10,S11,S12}, {d lg }, { (S10,) — S11,
(S11,4) - S12}, S10, S12)

Then the state set can be generated by filling b W ¢ ¢, ={A,}, 9(S2) ={ Ay, Az}, 9(S3) ={ A}, @
states related to each element of the transition se (S1) =@ (S4) = ... =9 (S13) =0

confTranSet The initial and accept state of the resulting F=({A,,..., A}, ®)

FSM model InitState and AccState can also be Then, each transition of the exampled state diagram

determined. could be transformed into several transitions oé th
InitState = deconfig (@@ ooy) resulting FSM model by the algorithm we proposethwi
AccState = config (0@ cot)) the HFSM model above. The results are shown asvisl|
This is the process during which state set of thevhere L indicates the transition of the state diagram

original state diagram are mapping into that of thewhich labeled;] Ci indicates one of the configurations of

resulting FSM model. But there’re some exceptionsthe HFSM model.

Copyright © 2008 SciRes JSEA

Towards Automatic Transformation from UML Model kESM Model for Web Applications

L.: C1 ={root, S1}, C2 ={root, S2, S5, S7},
(CL k) - C2

L,: C3 ={root, S3,S10}, (C1;) - C3

Lz C4 ={root, S2, S6, S9 }, C5 = {root, S4 }, 4C
I3) -~ C5

L4 C6 ={root, S3, S11}, C7 ={root, S3, S12 }C@,
;) - C5,(C6,}) - C5,(C7,1) - C5

Ls: C8 = {root, S2, S5, S8 }, C9 = {root, S2, S5, §9

C10 ={root, S2, S6, S7 }, C11 ={root, S2,

S6, S8,}, C12 ={root, S2, S6, S9}, (C2)I
- C10,(C8,4J) - C11,
(C9, k) - C12

Le: (C2,E) - C8,(C10,4) - C11

L (C8,F) - C9,(C11,1) - C12

Lg: (C3,k) - C6

Lo: (C6,b) - C7

Lo (C1, ko) - C8,(C1,{p) - Cl11

L1y C13 ={root, S13}, (C124]) - C13

L1z (C7, k) - C2

L (C6, |_’L3) - C13

We can now generate the state set of the resisM
model, which is filled up with all the configuratie
mentioned above: Q = { C1,..., C13}. The initial stas
C1 while the accept state is C5.

Finally, noticing there’s a history state H withihe
state S3, we should add several new transitiontheo
transition set of the FSM model:

(C5, “back (S10)")- C3, (C5, “back (S11)" }» C6,

(C5, “back (S12)")~ C7

Meanwhile, transitions labelegldhould be modified into:

(C3, ,(S10)) -~ C5, (C6, 4(S11)) - C5, (C7,1

(S12)) - C5.

5. Implementation of the Transformation
Mechanism

As automatic testing is our final goal

73

this section can be applied to all the diagram&JBiL
model, only the transformation mechanism variesrwhe
dealing with different kinds. Since computers anahle

to understand and analyze meanings conveyed by
diagrams, texts carrying equivalent amount of miation
would help. Here, we choose XMI.

5.1 XMl

XML Metadata Interchange (XMI) is a standard that
enables users to express objects using Extensiat&uyd
Language (XML), the universal format for represegti
data on the WWW. As a bridge across the gap ofatdje
and XML, it provides a standard mapping from olgect
defined by UML to XML, fulfilling object-oriented
feature of both UML and programming languages. In
addition, many mature tools supporting transfororati
from UML diagrams to corresponding XMI files are
presented, such as argoUML. Therefore, XMI becomes
the ideal textual representation of those UML daags.

5.2 Implementation Method

First of all, XMI files are needed which can be igas
obtained as output of argoUML with inputs as UML
diagrams. As shown in Figure 2, when receiving the
resulting XMI, we extract semantics by recognizing
different tags which indicate the location of infaation
related to certain elements of the UML diagramserth
data structure based on the corresponding HFSM Imode
could be constructed. With topological information
provided by the data structure, mapping rule for
transforming to FSM models works. Finally, resudtin
models are made to be hold in XML files with schema
defined by ourselves.

A tool prototype has been developed to support our
transformation mechanism and implementation method.
It takes state diagrams carried by XMl files asuispand
resulting FSM model carried by XML files as output.

of model Also, one can modify the chosen XMI file through an

/

transformation, the implementation of such mechanis edition platform provided by the tool before
by computer itself is required. The method propoised transformation operation starts.
root ™
S2: Download
S5:
. S6:
IIIu::ga:on
s8: Tool |17
Popup choosing
Search S11: lg
page Searching
Figure 1. State diagram of a web application for stdvare download
JSEA

Copyright © 2008 SciRes

74 Towards Automatic TransformatioonfrUML Model to FSM Model for Web Applications

HFSM mode

1 umL
diagrams

model level

—» FSM models
transformation

mechanism

semantic
~ éxtraction ~

<semantic etractior
" transformation XML files
mechanism

Figure 2. Implementation process

T TTTTTac L | Textrattion T T T T T T T &~ L
implementation

level

data structure for HFSM model

5.3 Simulation

To illustrate the resulting FSM model more cleadyr
tool implements the visualization of its textual
representation, which can be seen in Figure 5.

6. Conclusions

This paper proposes a method for transformatiom fro
UML model to FSM model. It allows users to model a
system with the language they used to without esri
towards automatic and efficient testing. As we om
the translation of state diagrams, a specific
transformation mechanism is proposed which enables
generation of corresponding FSM models with same
semantics.

Modelers create one state diagram for each object o

For the purpose of verifying the correctness of oukhe system and other UML diagrams for relations

approach, we use the tool developed by ourselves tgetween

simulate the example presented in the previousosect

Figure 3 shows an interface of our tool for autamat

testing for web applications. The characters in rttaén
frame are the textual representation of the exasngtiate
diagram.

After choosing transformation function of the totble
model will then be transformed into FSM model venitt
in XML language, as shown in Figure 4.

B Xodel-based Testing Tool for ¥eb Aapplications
1s Test Hel
s osEg

ML timestony = “Had Nov 25 16:24:17 CST 208>

Sion 10)IT sxporter>
07-05-12 09-03:08 40200 S, 12 ey 2007) §

Haeest - »
HadTebeast 3
HadTebeas s P

Figure 3. An interface of the tool for automatic teing
for web applications

Figure 4. FSM model written in XML language

Copyright © 2008 SciRes

them. Since our specific transformation
mechanism serves for every single state diagram,
synthesis of the FSM models each obtained fromadne
these state diagrams should be discussed. It depend
the information provided by other UML diagrams like
class diagrams, sequence diagrams etc. Besides the
UML diagrams themselves need to be transformed into
FSM with meta-model we defined so as to generatgeta
model that covers information carried in all of thigen
UML models. They could either be transformed disect
into FSM models, or to state diagrams as the §tsp,
which would then come into FSM models by the
mechanism we proposed. Experiments about comparison
on efficiencies of both should be hold with comelet
transition mechanisms before the choice can be made

Besides, details of elements contained in labels
including event, guard and action, as well as tti®oa
attribute of states, are not considered in our amese
their affections to the correctness of transforomatis
also a part of the future work.

B Kodel based Testing Tool for ¥eb Aapplications S =E
Fila Tocls Test Kelp
BB, HIOFNESE S .

Struture

Vice| ¥iew | Main | Flat | #ebFsn

=] .|
®Cl
®C2
®C3
®Ce
® s
® B
®CT
® 8
® 3
#® C10
®Cil
® Ci12
® C13

Figure 5. The visualization of the model's
representation

textual

JSEA

Towards Automatic Transformation from UML Model kESM Model for Web Applications

7. Acknowledgement

This work has been supported by National High-[12]
Technology Research and Development Program ofaChin
under grant No. 2007AA017144, Natural Science
Foundation of China under grant No. 60673115, MNafio
Grand Basic Research Program of China under grant N
2007CB310800, Research Program of Shanghe{im]
Education Committee under grant No. 07ZZ06 and
Shanghai Leading Academic Discipline Project, Rioje
Number: J50103.

(13]

(15]
REFERENCES

S. R. Dalal, A. Jain, N. Karunanithi, and B. M. Hoitay
“Model-based testing in practice,” Proceedingshef 21st
International Conference on Software Engineerings Lo
Angeles, California, United States, pp. 285-294, May[17]
1999.

H. Robinson, “Graph theory techniques in model-based
testing,” International Conference on Testing Comppute
Software, 1999.

W. E. McUmber and B. H. C. Cheng, “A general
framework for formalizing UML with formal languagés
Proceeding of the 23rd international conference on
Software engineering, Toronto, Canada, pp. 433-442[19]
2001.

J. Offutt, S. Y. Liu, A. Abdurazik, and P. Ammann,
“Generating test data from state-based specificafio

The Journal of Software Testing, Verification, and [20]
Reliability, pp. 25-53, 2003.

C. J. Mallery, “On the feasibility of using FSM
approaches to test large web applications,” May6200
The precise group,

http://www.cs.york.ac.uk/puml/.

R. M. Borges and A. C. Mota, “Integrating UML and

(1] [16]

(2]

(18]
(3]

[4]

[5]
(6]
[7]

(21]

formal methods,” Electronic Notes in Theoretical
Computer Science, Elsevier Science Publishers, pp.
97-112, July 2007. [22]

[8] D. Latella, I. Majzik, and M. Massink, “Automatic
verification of a behavioral subset of UML Statetha
diagrams using the SPIN model-checker,” Formal Atpe [23]
of Computing, pp. 637-664, 1999.

[9] I. Traore, “An outline of PVS semantics for UML
statecharts,” Journal of Universal Computer Science[24]
2000.

M. Z. Lai and J. Y. You, “Formalize the time-exteud

UML state chart with timed automata,” Computer
Applications, pp. 4—6, August 2003. [25]
E. Mikk, Y. Lakhnech, and M. Siegel, “Hierarchical
automata as model for statecharts,” Proceedingsedsrd

[10]

[11]

Copyright © 2008 SciRes

75

Asian Computing Science Conference on Advances in
Computing Science, pp. 181-196, 1997.

G. Booch, J. Rumbaugh, and I. Jacobson, “The unified
modeling language user guide,” China Machine Press,
Beijing, 2006.

R. Hower, “Web site test tools and site management
tools,” Software QA and Testing Resource Center, 2002
Belinfante, L. Frantzen, and C. Schallhart, “ToolsTest
Case Generation,” Model-based Testing of Reactive
Systems, Springer LNCS 3472, Springer-Verlag, pp.
391-438, 2005.

M. Utting, A. Pretschner, and B. Legeard, “A taxoryom
of model-based testing,” Technical Report 04/2006,
Department of Computer Science, The University of
Waikato (New Zealand), April 2006.

I. K. El-Far and J. A. Whittaker, “Model-based sedre
testing,” Encyclopedia of Software Engineering,
Wiley-InterScience, Vol. 1, pp. 825-837, 2002.

M. Blackburn, R. Busser, and A. Nauman, “Why
model-based test automation is different and what y
should know to get started,” in International Coafere

on Practical Software Quality and Testing, 2004.

B. Legeard, F. Peureux, and M. Utting, “Controlliregtt
case explosion in test generation from B formal ngtle
The Journal of Software Testing, Verification and
Reliability, 14(2): pp. 81-103, 2004.

A. Pretschner, H. Loétzbeyer, and J. Philipps, “Mode
based testing in evolutionary software developrient,
IEEE International Workshop on Rapid System
Prototyping 2001, pp. 155-161, 2001.

T. Isakowitz, E. A. Stohr, and P. Balasubramanian,
“‘RMM: A methodology for structured hypermedia
design,” Communication of the ACM, Vol. 38, No. 8,
August 1995.

F. Coda, C. Ghezzi, G. Vigna, and F. Garzotto, “Talsar
a software engineering approach to web site
development,” Proceedings of 9th International Vébdp

on Software Specification and Design, Ise-Shimpada
April 16-18, 1998.

H. Gellersen and M. Gaedke, “Object-oriented web
application development,” IEEE Internet Computing,
January—February 1999.

J. Conallen, “Modeling web application architectunéth
UML,” Communications of the ACM, Vol. 42, No. 10,
October 1999.

D. C. Kung, C. H. Liu, and P. Hsia, “An object-oried
web test model for testing web applications,” First
Asia-Pacific Conference on Quality Software, pp. 80—
October 2000.

F. Ricca and P. Tonella, “Analysis and testing atbw
applications,” Proceedings of the 23rd Internati@uaference

on Software Engineering, pp.12—-19, May 2001.

JSEA

