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Abstract 
This paper attempts to present some registers of sound pressure levels during 
the operation of large diesel engines (10 MW). During these registers we have 
found the preparation, occurrence and ending of events of thermoacoustic in-
stability. They appear after a loosing of chaos period or a reduction in fluctua-
tions in some frequencies. The most interesting phenomena were registered at 
low frequencies. However, they were accompanied by variations in sound 
emissions at medium and high frequencies. As there has been very little pub-
lished data concerning these phenomena at real scale, it is imperative to point 
out that every quasi-stationary state we have measured during these episodes 
has lasted some minutes, significantly much more time than that of lab scale 
results. 
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1. Introduction 

Thermoacoustic instabilities are a growing concern when working with large 
machines. A lot of work has been developed about gas turbines, but very few ex-
periences are reported measuring this phenomenon in real scales engines. 

Noise in diesel engines is highly consistent with the variation of the pressure 
inside each cylinder along the time. As combustion has random features, the cy-
linder pressure and the emitted noise are dominated by randomness over a wide 
range of frequencies where noise is produced [1]. 

When working for determining the acoustic power of large engines (10 MW), 
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we detected some unusual patterns in several third octave bands (TOB) record-
ings. We went through the analysis and we found we have measured some 
thermoacoustic instabilities episodes during the tests. 

Thermoacoustic oscillations cause increased damage on the engines. The high 
sound pressure levels associated with the oscillations that occur during ther-
moacoustic instability, impose an additional load on the wall of the combustion 
chamber. In addition, non-stationary flow increases heat transfer to the coating 
and local overheating may occur. Even the electronic systems that control com-
bustion could fail due to high levels of vibration or temperature, leading loss of 
the system control. 

According to Schemel et al. (2004) when the flow is homogeneous, the noise 
in a combustion chamber is an overlapping of the solution of three independent 
wave equations: the waves traveling upflow and downflow at sound speed, the 
turbulent convective waves and the entropy convective waves. If the flow ceases 
to be homogeneous, the entropy convective waves will begin to emit (radiate) 
sound [2]. 

Combustion instabilities arise due to complex feedback interactions between 
pressure and heat release oscillations. When these oscillations are sufficiently in 
phase, a large amplification of the initial perturbation is expected. Thus, the in-
stabilities of the combustion refer to the feedback of a coherent phase oscillation 
at a fixed frequency. 

The pressure oscillations occurring in the combustion chamber appear as 
fluctuations in the output flow of the injector. As a consequence, fluctuations in 
the incoming air flow occur in turn. Then, fluctuations in the release of heat 
would also appear. The frequency of these oscillations depends on the main 
cause of them. Low frequency oscillations (from 4 Hz to 70 Hz) are mainly due 
to instabilities in the flame front progressing in a heterogeneous way throughout 
the combustion chamber. They are related to low frequency emissions. From 70 
Hz to 700 Hz stationary waves with different phase angles appear [3]. If those 
oscillations couple with the operating frequencies of the equipment, high inten-
sity noise emissions will be released. 

Polifke et al. (2001) point out that the feedback between the combustion 
chamber acoustics and the entropy waves would be important, especially for 
lower modes and even at higher frequencies than those normally associated with 
convection waves [4]. The relative phase between the acoustic signal at the 
combustion chamber outlet and the pressure pulse generated by the entropy 
wave determines whether the combustion chamber's susceptibility to thermo- 
acoustic oscillations is improved or reduced by the interaction between the en-
tropy waves and the acoustics of the combustion chamber. 

The main issues affecting the occurrence of interferences are fluctuations and 
heterogeneities in fuel concentration, temperature regions, rate of heat release 
and also localized phenomena at the inlet and the fuel injection point. Depend-
ing on the characteristic times of the convection and acoustic phenomena, the 
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entropy waves and the acoustic of the combustion chamber could couple in a 
constructive or destructive way. 

It should be noted that the rotational frequencies of the machines in our case 
of study are within the proper range for flame front fluctuations. 

The most important mechanisms responsible for instability in combustion are 
relatedtothe injection of propellants, the formation of liquid droplets and the 
combustion process itself. If a high temperature region passes through a super-
sonic nozzle (i.e. where Ma > 1), the interaction with the non-uniform flow re-
gion developed produces an acoustic wave which propagates upstream. Then, 
the action of the acoustic wave in the combustion processes can generate new 
regions of non-uniform temperature, with the usual consequences on the stabil-
ity of the combustion. Therefore, there is a feedback loop within the chamber 
which maintains the oscillatory phenomena and which, under certain condi-
tions, may lead to a condition of instability. The evolution of eddies can excite 
oscillations, either by purely fluid interactions or by influencing combustion 
processes [5]. The first one leads to relatively weak instabilities because the 
available mechanical energy is relatively small. In contrast, when combustion is 
involved, significant oscillations can occur. Eddies can carry reagents and due to 
delays or chemicals or in the mixing time, the combustion may subsequently 
occur at times and in spatial locations favorable to destabilize an acoustic mode. 

The oscillations in pressure and velocity in the gas phase (acoustic distur-
bances) can influence the rate of vaporization of the liquid droplets if the period 
of oscillation corresponds to one of the characteristic times of the vaporization, 
namely [6]: life time of the drop; period of thermal inertia of the liquid; period of 
thermal diffusion of the liquid; period of diffusion of the gas phase of the gas 
mixture contained in the combustion chamber; period of diffusion of the gas 
phase by forced convection. 

According to Schuermans (2003), fluctuations in fuel concentration are the 
main (but not the only) cause of the interaction between the heat release and the 
sound field [7]. Litak et al. (2005) conclude that the noise level of the internal 
pressure when calculating the entropy of the variations of the maximum pres-
sures in successive cycles is not monotonous function of the load [3]. The results 
show that the combustion dynamics is a non-linear, multidimensional process 
mediated by noise. This method allows distinguishing a particular signal, in-
cluding chaos with its short-term prediction scale, and random noise. 

The “soul” of the problem is that all the ideal processes under which combus-
tion is studied in small machines are no longer valid in large ones. The hypo-
theses about instantaneous ignition, homogeneity of the mixture and all pheno-
mena occurring inside of each cylinder are no longer applicable. 

This paper is organized in four sections. After this introduction, some ways to 
early detecting thermoacoustic instabilities are presented. Then, our own expe-
rimental findings when measuring at several 10 MW enginesare detailed. At last, 
our conclusions are remarked. 
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2. Early Detection of Thermoacoustic Instabilities 

Research about thermoacoustic instabilities has mostly developed around gas 
turbines and at a laboratory scale. There are not enough published data about 
real scale cases. There are many proposals for detection of the occurrence of 
these phenomena. Hereby we present three of them; we think our experimental 
findings can help to deeper studies on them. 

2.1. Loss of Chaos 

The phenomenon of loss of chaos was studied by Vinneeth et al. (2013) [8]. They 
present convincing evidence that combustion noise is deterministic. Therefore, 
the traditional “signal plus noise” paradigm that is usually implicitly assumed in 
the models and analyzes of experimental data sets needs to be re-examined if 
capturing instabilities in the combustion chambers is wanted because these ir-
regular fluctuations might contain useful prognostic information. Vinneeth et al. 
generate a way to predict the impending passage to unstable combustion by ap-
plying the 0 - 1 test for chaos on sequentially acquired pressure measurements. 
For low level of combustion noise the measured K value is quite close to 1 in the 
initial stages, indicating that the combustion noise is chaotic. The value of K has 
a decreasing tendency as the Reynolds number of the flux increases, reaching 
values close to 0 at the beginning of the instability. Since the loss of the chaos 
condition occurs in a gentle manner, the value of K can be used as a measure of 
the proximity of an imminent instability condition. Choosing a threshold value 
of K that corresponds to the initial stages of loss of chaos (e.g. 0.9), it is possible 
to know the condition enough in advance to take actions that modify the opera-
tion parameters and thus avoid the occurrence of instability and therefore its 
subsequent installation as an operating regime [8]. 

The precursor turns out to be an objective measure of the proximity of the 
combustion chamber to the unstable operating regimes and is independent of 
the details of the geometry, the composition of the fuel and the stabilization of 
the flame. 

2.2. Rapid Detection by Analyzing Trends of Variation 

During the preparation of a thermoacoustic instability event, some early “symp-
toms” should be detected, thus allowing taking actions to avoid the instability 
occurrence. Ibrahim (2007) proposes the use of a low-cost method which implies 
having a good identification and characterization of several acoustic modes to be 
able to follow its temporal evolution and to know about its growing and de-
creasing tendencies. This background allows to make a good prediction without 
numerically integrating over time: its detection tool analyzes the behavior of 
rates of variation and not modes, which is undoubtedly simpler and faster. The 
method consists in cataloging and linearly estimating of magnitudes of the me-
chanisms of amplification and attenuation. The application of linear approxima-
tions to nonlinear mechanisms allows, however, obtaining a reasonably com-
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plete and manageable description for the purposes of the analysis. The author 
defines an index of stability, so that the imminent occurrence of an instability is 
anticipated when a certain value is exceeded. In this particular case, the oscilla-
tion is expected to occur when the value of the index exceeds one unit [9]. 

The goal of the method is to allow fast, low-cost decisions that can be made 
for a wide variety of design configurations and operating conditions without the 
complexity of other tools that require computational fluid dynamics. The pro-
posed approach achieves moderate success by being tested on a basis of experi-
mental data available in the literature as well as with new experiments, so it may 
also be useful to complement other methods already in use. 

2.3. Experimental Diagnosis 

Lee and Santavicca (2005) carry out an extensive discussion of the applicable 
methods for experimentally diagnosing, i.e. in operation, if instability is occur-
ring in a combustion chamber [10]. Among the methods they discuss, brief 
comments are made here on some of them. Pressure measurements are usually 
the simplest ones, although it is necessary to take a set of precautions, for exam-
ple about the location of the sensor or how to fix it, in order to obtain informa-
tion in accordance with the objective. In addition to measuring pressure fluctua-
tions in the combustion chamber, it is useful to simultaneously measure pressure 
fluctuations in the nozzle and in the fuel line. These fluctuations result in fluctu-
ations in the rate of fuel flow, a phenomenon known as coupling of the feed sys-
tem. Such measurements provide valuable information for evaluating the coupl-
ing role of the feed system in terms of its role as a mechanism in conducting or 
damping/aborting the effective occurrence of instability [10]. 

The effect of entropy waves on flow field instabilities is known since 1965, but 
their importance was supposed to be restricted only to low frequencies. More 
recent works (e.g., [4]) show that interference between entropy waves and pres-
sure disturbances can be constructive or destructive, which can further aggravate 
the problem. 

Fluctuations of heat release in the flame can cause acoustic waves that propa-
gate upstream in the feed lines and in turn cause disturbances in the incoming 
air/fuel mixture. These disturbances can be carried by the mean flow and trigger 
a fluctuation in the flame controller, closing the instability loop. Several studies 
have addressed this possible mechanism and are considered of high potential to 
generate instability phenomena. The acoustic-convective waves are carried by 
the medium flow, such as eddies detached from the flame stabilizer and/or en-
tropy waves that propagate downstream, and generate acoustic waves that prop-
agate upstream. 

There are also other possible sources of oscillatory combustion instability 
ranging from purely chemical-kinetic phenomena to other only fluid-mechani- 
cal phenomena. Their contributions vary with modes of oscillation. It is also 
possible that some of the modes of oscillation are caused by a combination of 
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perturbations (velocity, temperature, velocity of laminar flame, etc.). 
Several mechanisms contribute to the occurrence of thermoacoustic instabili-

ties [11]: fluctuations in the air/fuel ratio, acoustic-convective waves and entropy 
waves. Eddies detachment was suggested as the cause of combustion instabilities 
in 1956 by Rogers and Marble [12]. Instability is triggered when the vortices that 
are released from the flame stabilizer, entrain unburned mixture that spreads 
downstream and cause a sudden release of heat at some point in its path. This 
triggers an acoustic wave propagating upstream that closes the feedback loop. 

A similar result would be found if these vortices affect an obstacle down-
stream (e.g. the outlet nozzle, a throttling, etc.), even if they carry no unburned 
mixture or if it is a non-reactive flow or a cold flow, causing the pressure oscilla-
tions to intensify. This result is purely acoustic and does not consider the con-
tributions related to heat releasing. 

Since hot spots are carried by the medium (usually low-speed) flow, it is as-
sumed that entropy effects (if exist) are to occur at low frequencies. When these 
hot spots reach the entrance of a strangulated nozzle, the propagation of an up-
flow acoustic wave is triggered and it can cause an acoustic instability. 

3. Experimental Findings 
3.1. Measurements 

A set of measurements were carried out to determine the acoustic power of eight 
large diesel engines (10 MW each). They were done according to UNE-EN-ISO 
3744:2010 Standard [13]. A Class 1 Bruel & Kjaer sound pressure level meter 
(Model 2250) was used. Also the environmental sound pressure levels in the en-
gines room were recorded during the tests. 

All the figures in this section have been built using the experimental data reg-
istered during the tests; please notice that all graphics relate to only one enginein 
operation. 

3.2. High Frequencies’ Findings 

We found three kinds of phenomena that are to be called as cases A, B and C. 
Case A refers to some high frequency components that became coherent from 

some time during the test (first presented at Figure 1 and Figure 2). 
Case B is related to some simultaneous jumps occurring also at high frequen-

cies (first presented at Figure 3). 
Case C show reduced variability and increasing sound pressure levels in some 

high frequency TOB (initially presented at Figure 4 and Figure 5). They are 
preceded or accompanied by episodes of loss of chaos at low frequencies, mainly 
at 25 Hz. 

The first case (Case A) shows a qualitative change at the highest frequency 
waves at about 11:15: they become coherent as shown by the pattern they exhibit 
from 10,000 Hz and upper frequencies.It doesn’t happen at lower frequencies 
(Figure 1 and Figure 2). 
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Figure 1. Time evolution of sound pressure levels in selected third-octave bands (Case 
A). Please note the change of shape occurring near 11:15 at the graphs of the highest fre-
quencies. 
 

 
Figure 2. Loss of chaos at the highest audible frequencies (Case A). 
 

 
Figure 3. Time evolution of sound pressure levels in selected third-octave bands (Case B). 
Please note the simultaneous jumps occurring at the highest frequencies. 
 

Another kind of phenomena appears at high frequencies in Case B. No cohe-
rence phenomena appear but there are some ascending and descending jumps 
that occur within some 3 to 5 minutes of difference. Although they are not re-
flected in the broad band levels, sound pressure levels jumps occur simulta-
neously in several TOBs (Figure 3). 

The third case we found at high frequencies (Case C) is shown in Figure 4 
and Figure 5. The sound pressure levels at high frequencies reduce their varia- 
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Figure 4. Time evolution of sound pressure levels in selected third-octave bands (Case 
C). Please note the decreasing variability of sound pressure levels at the highest audible 
frequencies. 
 

 
Figure 5. Time evolution of sound pressure levels in selected third-octave bands (Case 
C). Decreasing variability of sound pressure levels with increasing levels at the highest 
audible frequencies. 
 
bility while increasing their value. 

This occurs from 2500 Hz and upper frequencies. The sound pressure levels at 
2000 Hz are rather constant over the time and have very few fluctuations. 

We have also registered interference phenomena during noise measures, as 
shown in Figure 6. Graphs show destructive interferences whether the compo-
nents in different TOB appear almost in opposition of phase. It was found to 
happen both at harmonic frequencies (left) and at non-harmonic ones (right). 

3.3. Related Phenomena at Low Frequencies: The Main Causes 

Once we have identified what was happening at high frequencies, we went on 
looking for regularities at other frequencies. We found that the root causes in the 
above-mentioned cases were linked to changes at low frequencies. 

The changes in regime of acoustic emissions in TOB of 25 Hz but also 12.5 Hz 
and 50 Hz were always present during the recorded events. 
We had only one measurement where Case A occurred (coherence in high fre-
quencies components). For this particular case, we found that the component in 
50 Hz was qualitatively less chaotic in the previous 10 minutes (Figure 7) and 
that was a consequence of an extended process which began about 50 minutes 
earlier (Figure 8). 
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(a) 

 
(b) 

Figure 6. Destructive interferences in selected third-octave bands. (a): low frequencies 25 
Hz and 50 Hz; (b): middle frequencies 400 Hz and 500 Hz. 
 

 
Figure 7. Previous changes in 16 Hz and 50 Hz about 10 minutes earlier than the begin-
ning of Case A. 
 

 
Figure 8. Different steps during Case A preparation: loss of coherence at 25 Hz (1 hour 
earlier) and sequence of different quasi-stationary states (about 10 minutes each one). 
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Case B was the most frequent during our measurements. It can be seen as a set 
of jumps in sound pressure levels occurring simultaneously in several TOB. 
There are at least three of these jumps in Figure 9. It corresponds to the whole 
event presented in Figure 3. It is possible to observe that jumps in high frequen-
cies are anticipated by changes at lower frequencies expressed as episodes of loss 
of chaos. 

Figures 10-13 show the same kind of phenomena occurring in other events. 
The third group of cases we measured (Cases C) had the most unexpected be-

haviour at low frequencies. 
 

 
Figure 9. Simultaneous jumps in sound pressure levels at different TOB (Case B). 
 

 
Figure 10. Measured sound pressure levels in selected TOB. Detail of Case B presented in 
Figures 3-9. Please note the great change at 25 Hz TBO. 
 

 
Figure 11. Examples of occurrence of Case B. Please note jumps at 25 Hz, 50 Hz and 160 
Hz. 
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Figure 14 shows the evolution of some TOB during the whole event and Fig-
ure 15 presents a detail of what happens at TOB of 25 Hz and 50 Hz. When 
sound pressure levels and variability at 2.500 Hz begin to increase, low frequency 
bands return to a more chaotic condition. Note that sound pressure levels at 
certain middle TOB (e.g. 160 Hz and 315 Hz) show similar behavior than high-
est frequencies. 

Another interesting example is shown in Figure 16 and Figure 17. The in-
crease of sound pressure levels at high frequencies (e.g. 2500 Hz and 3150 Hz) is 

 
 

 
Figure 12. Examples of occurrence of Case B. Jumps at 25 Hz, 50 Hz and 160 Hz are ac-
companied by smooth changes at 12.5 Hz, 125 Hz and 315 Hz. 
 

 
Figure 13. Examples of occurrence of Case B. Changes of behaviour at 25 Hz are accom-
panied by others at several TOB e.g. 12.5 Hz, 40 Hz and 200 Hz. 
 

 
Figure 14. Example of occurrence of Case C. The phenomena at 25 Hz and 50 Hz occur 
after loss of variability and reduction of sound pressure levels at high frequencies; then, 
they begin to grow again. 

70

80

90

100

110

11:57:00 12:02:00 12:07:00 12:12:00 12:17:00

L (
dB

)

Time

      

LAeq LZeq 12.5Hz LZeq 25Hz LZeq 40Hz LZeq 50Hz LZeq 200Hz LZeq 3.15kHz

https://doi.org/10.4236/jmp.2017.810099


A. E. González et al. 
 

 

DOI: 10.4236/jmp.2017.810099 1696 Journal of Modern Physics 
 

very smooth; it lasts more than one hour since the beginning of the phenome-
non at low frequencies (25 Hz and 50 Hz), as it can be seen in a closer approach 
shown at Figure 17. 

Finally, Figure 18 and Figure 19 show the evolution of some TOB during the 
whole event introduced in Figure 5. Figure 20 presents a closer approach of the 
retrieve of chaos at low frequencies. Two different scales seem to be involved in 
the phenomena: a quasi-periodic wave and a modulating one. This behaviour 
seems to appear in Case B, but in a less evident way. 
 

 
Figure 15. Measured sound pressure levels in selected TOB. Detail of Case C presented in 
Figure 14. 
 

 
Figure 16. Examples of occurrence of Case C. The increase of sound pressure levels at 
high frequencies is very smooth. 
 

 
Figure 17. Measured sound pressure levels in selected TOB at the beginning of the epi-
sode. Detail of Case C presented in Figure 16. 
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Figure 18. Examples of occurrence of Case C. Full event partially shown in Figure 5 and 
Figure 13. 
 

 
Figure 19. Measured sound pressure levels in selected TOB at the beginning of the event 
presented in Figure 18. 
 

 
Figure 20. Measured sound pressure levels in selected TOB: 20 Hz, 25 Hz, 40 Hz and 50 
Hz. Detail of the beginning of the Case C event presented in Figure 18 and Figure 19. 
Please note that the process of retrieving of chaos lasts more than 25 minutes. 

4. Conclusions 

We have been able to measure the occurrence of several events of thermoacous-
tic instability in 10 MW engines. 

These phenomena occur in large machines in which homogeneity of parame-
ters and simultaneity of processes in the combustion chamber are not proper 
hypothesis. Small differences and/or fluctuations can generate disturbances and 
fluctuations in combustion parameters. In these conditions, for example, if a 
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coupling occurs with some geometric dimension, the system will go into reson-
ance. 

During the preparation of the instability events, processes of loss of chaos in 
low frequencies, especially in 25 Hz or 50 Hz, were observed. Also, a reduction 
of the variability of sound pressure levels in high frequencies occurred. After 
some minutes, the system retrieves the condition of randomness of the combus-
tion. 

Each of the “steady” states of operation lasts several minutes, as so the transi-
tion from one to another does. 

Every quasi-stationary before and after the occurrence of a thermoacoustic in-
stability episode last a few minutes, so active control systems seem to be a suita-
ble solution to address such problems on large machines. 

References 
[1] Strahle, W.C. (1978) Journal of Progress in Energy and Combustion Science, 4, 

157-176.   

[2] Schemel, C., Thiele, F. and Michel, U. (2004) Numerical Simulation of the Noise 
Generation at the Outlet Section of Combustion Chambers. CFD-DAGA2004, 
Strasbourg, Francia. 

[3] Litak, G., Taccani, R., Radu, R., Urbanowicz, K., Hołyst, J.A., Wendeker, M. and 
Giadrossi, A. (2005) Chaos, Solitons and Fractals, 23, 1695-1701.  
www.elsevier.com/locate/chaos  
https://doi.org/10.1016/S0960-0779(04)00434-5 

[4] Polifke, W., Paschereit, C.O. and Döbbeling, K. (2001) Journal of Acoustics and Vi-
bration, 6, 135-146. https://doi.org/10.20855/ijav.2001.6.382 

[5] Cullick, F.E.C., Lin, W.H., Jahnke, C.C. and Sterling, J.D. (1991) Modeling for Ac-
tive Control of Combustion and Thermally Driven Oscillations. American Control 
Conference, 2939-2948, 26-28 June 1991.  
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4791942&isnumber=47
91300 

[6] Ghosh, A. (2008) The Role of Density Gradient in Liquid Rocket Engine Combus-
tion Instability, Chapter 2: Literature Review. 

[7] Schuermans, B. (2003) Modeling and Control of Thermoacoustic Instabilities. Ph.D. 
Thesis, École Polytechnique Fédérale de Lausanne. 

[8] Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S. and Sujith, R.I. (2013) Interna-
tional Journal of Spray and Combustion Dynamics, 5, 273-290.  
https://doi.org/10.1260/1756-8277.5.4.273 

[9] Ibrahim, Z.M.A. (2007) An Acoustic Energy Framework for Predicting Combus-
tion-Driven Acoustic Instabilities in Premixed Gas-Turbines. UC San Diego Elec-
tronic Theses and Dissertations, Ph.D., UC San Diego. 123 p. Permalink.  
https://escholarship.org/uc/item/6wn0k48j 

[10] Lee, J.G. and Santavicca, D.A. (2005) Experimental Diagnostics of Combustion In-
stabilities. Chapter 16. In: Lieuwen, T.C. and Yang, V., Eds., Combustion Instabili-
ties in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, 
and Modeling, Volume 210, Progress in Astronautics and Aeronautics, American 
Institute of Aeronautics and Astronautics, Inc. (Frank K. Lu, Editor-in-Chief). 
Copyright c 2005 by the American Institute of Aeronautics and Astronautics. 

https://doi.org/10.4236/jmp.2017.810099
http://www.elsevier.com/locate/chaos
https://doi.org/10.1016/S0960-0779(04)00434-5
https://doi.org/10.20855/ijav.2001.6.382
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4791942&isnumber=4791300
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4791942&isnumber=4791300
https://doi.org/10.1260/1756-8277.5.4.273
https://escholarship.org/uc/item/6wn0k48j


A. E. González et al. 
 

 

DOI: 10.4236/jmp.2017.810099 1699 Journal of Modern Physics 
 

[11] Kabiraj, L. and Sujith, R.I. (2012) Journal of Fluid Mechanics, 713, 376-397   

[12] Rogers, D.E. and Marble, F.E. (1956) Jet Propulsion, 1, 456-462. 

[13] Asociación Española de Normalización y Certificación - Comité Europeo de 
Normalización. Norma UNE-EN-ISO 3744:2010. Acústica: Determinación de los 
niveles de potencia acústica y de los niveles de energía acústica de fuentes de ruido 
utilizando presión acústica. Métodos de ingeniería para un campo esencialmente 
libre sobre un plano reflectante (ISO 3744:2010). 84 p. Julio, 2011. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jmp@scirp.org 

https://doi.org/10.4236/jmp.2017.810099
http://papersubmission.scirp.org/
mailto:jmp@scirp.org


Journal of Modern Physics, 2017, 8, 1700-1722 
http://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2017.810100  Sep. 6, 2017 1700 Journal of Modern Physics 
 

 
 
 

Sobolev Spaces, Schwartz Spaces, and a 
Definition of the Electromagnetic and 
Gravitational Coupling 

Jean-Philippe Montillet 

ESPlab, Ecole Polytechnique de Lausanne, Neuchâtel, Switzerland 

 
 
 

Abstract 
The concept of multiplicity of solutions was developed in [1] which is based 

on the theory of energy operators in the Schwartz space ( )− S  and some 

subspaces called energy spaces first defined in [2] and [3]. The main idea is to 
look for solutions of a given linear PDE in those subspaces. Here, this work 
extends previous developments in ( )m− S  ( m +∈ ) using the theory of 

Sobolev spaces. Furthermore, we also define the concept of Energy Parallax, 
which is the inclusion of additional solutions when varying the energy of a 
predefined system locally by taking into account additional smaller quantities. 
We show that it is equivalent to take into account solutions in other energy 
subspaces. To illustrate the theory, one of our examples is based on the varia-
tion of Electro Magnetic (EM) energy density within the skin depth of a con-
ductive material, leading to take into account derivatives of EM evanescent 
waves, particular solutions of the wave equation. The last example is the deri-
vation of the Woodward effect [4] with the variations of the EM energy den-
sity under strict assumptions in general relativity. It finally leads to a theoreti-
cal definition of an electromagnetic and gravitational (EMG) coupling. 
 

Keywords 
Electromagnetism, General Relativity, Schwartz Space, Sobolev Spaces,  
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1. Overview 

Teager-Kaiser energy operator was defined in [5] and the family of Teager- 
Kaiser energy operators in [6]. Many applications in signal processing were 
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found over the past 25 years such as detecting transient signals [7], filtering 
modulated signals [8], image processing [9]. However, [2] and [10] introduced  
the conjugate Teager-Kaiser energy operator and associated family ( )k k

+

∈
Ψ


.  

Subsequently using iterations of the Lie Bracket, [3] defined the generalized con-  

jugate Teager-Kaiser energy operators [ ]. p

k k

+

∈

      
 ( p +∈ ). To abbreviate  

the notation, we sometimes use the generic name energy operator in order to 
refer to the conjugate Teager-Kaiser energy operators and the generalized con- 
jugate Teager-Kaiser energy operators. Precision is made in the denomination 
when it is required. Furthermore, the purpose of the energy operators and 
generalized energy operators was the decomposition of the successive derivatives 
of a finite energy function nf  ( n  in { }0,1+ − ) in the Schwartz space 

( )− S . The generalized energy operators were introduced when decomposing  

the successive derivatives of a finite energy function of the form [ ]
1

n
pf

+     
  

( n  in { }0,1+ − ) in the Schwartz space. It then follows in [1] and [3] the 
definition of Energy Spaces, which are subspaces of the Schwartz Space ( )− S  
associated with energy operators and generalized energy operators. This 
definition was used to define the concept of multiplicity of solutions in [1] 
(Theorem 2 and Corollary 1). The idea is to consider those energy spaces and 
functions associated with them when solving linear PDEs. More precisely, we 
look for solutions of a nominated linear PDE within those energy spaces 
(including the space reduced to { }0 ). The concept was further developed using 
the Taylor series of the energy of a solution ( )− S  for a nominated PDE. The 
work was based on finding when the successive derivatives, defined through the 
Taylor series coefficients, are also solutions of this particular PDE (see Section 4 
in [1]). 

This work first generalizes in ( )m− S  ( m +∈ ) the theorems and lemmas 
established in [2] and [3] stated for ( )− S  using the properties of the 2L  
space called here ( )2 mL   ( m +∈ ) together with the general property of the 
Schwartz space ( ) ( )2m mL− ⊂ S  ( m +∈ ) [11]. However, this work imposes 
the condition of the stability by Fourier transform for any functions in ( )− S  
in order to use the Sobolev space(see Appendix I, Definition I.1). Thus, in this 
work we consider ( )− S  together with its dual: the tempered distributions 

( )*,− S . Secondly, the energy spaces k
pM  ( p +∈ , k +∈ ) are also redefined 

as subspaces of ( )m− S . Furthermore, with the definition of the Sobolev spaces, 
and in particular the Hilbert spaces ( )k mH , it allows to show the inclusion 

( ) ( )2k k m m
p L⊂ ⊂ M H . Then, we finally redefine in m  the Theorem 3 

established in [1] and the concept of multiplicity of solutions. 
The next section together with Appendix I are reminders about some 

important definitions and properties for the Sobolev spaces, the Schwartz space 
and the L2-norm. Section 3 deals with the generalization of the work exposed in 
[2] and [3] in ( )m− S  and the redefinition of the energy spaces. Section 4 
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recalls the concept of multiplicity of solutions defined in [1] and generalized in 

( )m− S  with Theorem 4. The last section focuses on some applications of this 
theory. The first application is the wave equation and the discussion of taking 
into account more solutions from other energy spaces. We then define another 
concept called energy parallax (i.e. mathematically in Definition 4, see discussion 
on the physical interpretation in Appendix II) which is directly related to 
multiplicity of solutions. In order to illustrate this concept, a second example is 
the variation of energy density in the skin depth of a conductor material. The 
idea is to show that the variation of energy density can lead to consider multiple 
derivatives of evanescent waves resulting from the electromagnetic field. The last 
section is dedicated to the derivation of the Woodward effect [4] from the 
Hoyle-Narlikar theory [12] [13] using the EM energy density and a discussion 
takes place about the relationship to the presented theory of energy spaces. It 
leads to a theoretical definition of an Electromagnetic and Gravitational cou- 
pling (EMG). 

2. Definition of L-2 Norm and Schwartz Space 
2.1. Notation and Symbols 

In this work, several symbols are used. The set of integer numbers   is some- 
times called only for the positive integer such as +  or m

+  (for a space with 
dimension m). When the integer 0 is not included, it is explicitly mentioned 
such as { }0+ − . The set of natural numbers is  , with only the positive 
numbers defined as + .   is the set of real numbers. Also, the Schwartz space 
is here called ( )m− S  which is the notation used in previous works such as [1] 
and [2]. Several notations describe the relationship between spaces such as 
intersection ( ), union ( ), inclusion (⊂ , inclusion without the equality  , 
inclusion with equality ⊆ ). Reader can refer to [14] or advanced mathematical 
textbooks for more explanations. 

2.2. L-2 Norm and Schwartz Space 

With the difference in Appendix I and the generalities with the Sobolev spaces, 
here the analysis focuses on the L-2 norm (p equal to 2 for the pL  norm). It  
allows to state the Plancherel identity ( )2 mf L∀ ∈  : 

( )( )22d dm mR R
f t f ξ ξ=∫ ∫                     (1) 

We are here interested in the functions belonging to the Schwartz space 

( ) ( )2m mf L−∈ ⊂ S . The Schwartz space consists of smooth functions whose 
derivatives (including the function) are rapidly decreasing (e.g., the space of all 
bump functions [15]). The Schwartz space ( )m− S  is defined as (for  

[ ]1,2m∈  in [1] [3], for m +∈  in [14] [16]): 

( ) ( ){ }, , ,m m mf fα β α β− ∞
+= ∈ < ∞ ∀ ∈  S C             (2) 

https://doi.org/10.4236/jmp.2017.810100


J.-P. Montillet 
 

 

DOI: 10.4236/jmp.2017.810100 1703 Journal of Modern Physics 
 

where α , β  are multi-indices and 

( ), sup mt
f t D f tβ α
α β ∈

=


                     (3) 

Note that one can define ( )m− S  with , mα β∀ ∈  according to [17], but 
we decide to use m

+  following the development in the next sections. It is useful 
for the remainder of the work to remember some properties of the Schwartz 
functions in ( )m− S . 

Properties 1. [18] Some Properties of ( )m− S . 
• If 1 p≤ ≤ ∞ , then ( ) ( )m p mL− ⊂ S  
• ( )m− S  is a dense subspace of ( ),2k mH   ( k∈ ). 
• (Stability with Fourier transform) The Fourier transform is a linear 

isomorphism ( ) ( )m m− −→ S S . 
• If ( )mf −∈ S , then f  is uniformly continuous on m . 
The proof of those properties are standard results with Schwartz spaces 

established in many harmonic analysis books (e.g., [17] [18]). 
Remark (1) Note that in [1] [2] [3], the author used the general term of finite 

energy functions for Schwartz functions in ( )m− S , with m  restricted to 

[ ]1,2 . It is a common definition in signal processing for the functions in  
( )2 mL   and generally associated with the Plancherel identity. 
Remark (2) One way to interpret the property that ( )m− S  is stable by 

Fourier transform is: 
for ( )mf −∈ S , k∈  

( ) ( )( ){ }22sup 1m

k
f

ξ
ξ ξ

∈
+ < ∞



  

( ) ( )( )
22

2, 1
1

k aa fξ ξ
ξ

↔ ∃ ∈ + ≤
+

                (4) 

Now, let us recall the definition of the Hilbert spaces ( ),k p mH   (Sobolev 
spaces ( ),k p mW   for 2p = , see Appendix I, Definition I.1) from (35) and 
drop the sup-script p in the remainder of this work: 

( ) ( )
( ) ( ) ( ) ( ){ }2*, 2 2: 1

k m k m

km m

W H

f f Lξ−

=

= ∈ + ∈S

 

 
    (5) 

Note that ( )*, m− S  is the space of tempered distributions, dual of ( )m− S  
via the Fourier transform. A function belongs to ( )2 mL   if and only if its 
Fourier transform belongs to ( )2 mL   and the Fourier transform preserves the 
L2-norm. As a result, the Fourier transform provides a simple way to define L2- 
Sobolev spaces on m  (including ones of fractional and negative order m  
[18]). Finally, the stability via Fourier transform is the key for  

( ) ( )m k m−   S H . 
Remark (3) Following the remark (Remark 3.4 in [19]) and the general 

properties of the Fourier transform, one can state the equivalence relationship in 

( )2 mL   
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( ) ( )2k m mf D f L kα α∈ ↔ ∈ ∀ ≤ H  

( ) ( )2 mD f L kα α↔ ∈ ∀ ≤  

( ) ( )2 mf L kαξ α↔ ∈ ∀ ≤  

( ) ( ) ( )22 21 mD f L k
α αξ α↔ + ∈ ∀ ≤                (6) 

Using the definition of ( )k mH  and the properties of the Fourier transform, 
it is also possible to show that for k k′> , ( ) ( )k m k m′⊂ H H  [20], and the 
relationship ( ) ( )0 2m mL= H . It is also possible to define 

( ) ( )m k m
k

∞
∈

=
  H H  with ( ) ( )m m− ∞⊂ S H , and to extend this equality 

to k∈  following [19]. 

3. On Some Subsets of Schwartz Spaces: Energy Spaces 

This section first recalls generalities on the Teager-Kaiser energy operator and 
its conjugate operator with the application to decompose Schwartz functions 
from the work developed in [2] and [3]. We call in this work Energy operators 
the families of operators based on the Teager-Kaiser energy operator. The 
definitions and theorems are here stated for the Schwartz space ( )m− S  
( m∈ ) whereas the preliminary work in [2] and [3] stated the definitions and 
main theorems for [ ]1,2m∈ . For 2m =  in Section 6 in [3], a discussion takes 
place during the application of the theory to linear partial differential equations. 
Secondly, the energy spaces defined in [1] and [3] are here generalized on 

( )m− S  with novel relationships with Sobolev spaces ( )k mH  ( k∈ ). 

3.1. Definition and Properties of the Energy Operators in ( )mS−   

Let us call the set ( ) ( )( ),m m− −  S S  all Schwartz functions (or operators) 

defined such as ( ) ( ): m mγ − −→ S S . For ( )mf −∈ S , let us define k
i f∂   

( k∈ , [ ]1, ,i m∈ 
), with f  defined with the vector parameter  

[ ]1 2, , , m
mt t t= ∈ T  such as 

[ ]

( )( )( ) [ ] { }

[ ]

1
1 2 1 1 1

0

, 1, , , {0}

, , , , , d d , 1, , , 0

, 1, ,

i

k
k
i k

i

tk
i k m k

i

ff i m k
t

f f t t t t i m k

f f i m

τ
τ τ τ

+

−
+−∞ −∞

 ∂
∂ = ∀ ∈ ∀ ∈ − ∂

∂ = ∀ ∈ ∀ ∈ −

∂ = ∀ ∈



∫ ∫



   





 (7) 

Combining multiple integrals and derivatives justify the use of the Schwartz 
space ( )m− S  and echoes the choice made previously in [2] (see equation 
(10)). The definitions and results given in [2] and [3] in the case ( )− S  are 
now formulated for ( )m− S . Section 2 in [2] and Section 4 in [3] defined the 
energy operators k

+Ψ , k
−Ψ  ( k  in  ) and the generalized energy operators  

[ ]. p

k

+
 
   and [ ]. p

k

−
 
   ( p  in + ). Following [3], let us define the energy  
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operators with multi-index derivative in (7): 

( )

( ) ( )

[ ] ( )
[ ] ( )

1 1 0

1

,
1

,,

. . . . .

. .

.,. .

.,. .

m
k k

k i i i i
i
m

k k i
i

kk

k ik i

ψ

ψ

+ −

=

+ +

=

+ +

+ +

Ψ = ∂ ∂ + ∂ ∂

Ψ =

= Ψ

=

∑

∑                    (8) 

Further more, we also use the short notation [ ] [ ].,. .k k

+ +=  in the remainder of 
this work. Note that k

−Ψ  is the conjugate operator of k
+Ψ  and ,k iψ −  respec- 

tively to ,k iψ + . 

Remark (4) The families of (generalized) energy operators [ ]. p

k k

+

∈

      
 and 

[ ]. p

k k

−

∈

      
 ( p  in + ) are also called families of differential energy operator  

(DEO) [2] [3]. 

Furthermore, [3] defined the generalized energy operators [ ]1.
k

+
 
   and 

[ ]1.
k

−
 
   ( k∈ ): 

[ ] [ ] ( ) ( ) ( ) ( )

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

1 1 0
, , , ,, , ,

0 01 1
, , , , ,

0 00

, ,

, , ,1

.,. , .,. . . . .

.,. , .,. . .

. .

.,. , .,. .,. , .,.

.,. , .,.

k k
i k i i k i i k i i k ik i k i k i

k
i ik i k i k i k i k i

k
i i

k i k i

m

k k k i k ik k ii

k k

ψ ψ ψ ψ
++ + + − + + +

+ + ++ + −

+ +

+ ++ + + +

=

+ +

  = ∂ ∂ + ∂ ∂ 

     = ∂ ∂     

   + ∂ ∂   

   =   



∑

[ ] [ ]1 1

,1
. .

m

k k i ki

+ + +

=

    = =     ∑

      (9) 

By iterating the bracket [ ]. , [3] defined the generalized operator [ ]
,

. p

k i

−
 
   

and the conjugate [ ]
,

. p

k i

+
 
   with p in + . Note that [ ]

1,
0p

i
f

−
  =   p∀  in +  

and i in  . 
Now, the derivative chain rule property and bilinearity of the energy operators 

and generalized operators (for i in [ ]1,2 ) are shown respectively in [2], Section 
2 and [3], Proposition 3. The generalisation of this property to i in [ ]1, ,m  for  

the operators ( ), .k iψ + , ( ), .k iψ − , [ ]
,

. p

k i

−
 
   and [ ]

,
. p

k i

+
 
   ( k∈ , p +∈ ) is  

trivial due to the linearity of the derivatives and integrals when defining k
i∂  in 

(7). Due to the linearity of the sum, the bilinearity property is also generalized to  

( ).k
+Ψ , ( ).k

−Ψ , [ ]1.
k

+
 
   and [ ]1.

k

−
 
   ( k∈ , p +∈ ). 

Definition 1. [2] f∀  in ( )m− S , { }0v +∀ ∈ − , n +∀ ∈  and 1n > , the 
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family of operators ( )k k
G

∈  (with ( ) ( ) ( )( ),m m
k k

G − −
∈

⊆   S S ) decom- 

poses v n
i f∂  in m  ( [ ]1, ,i m∈ 

), if it exists ( ) { }0j j
N +

+

∈
⊆


 ,  

( ) j

j

N
l l N

C
=−

⊆  , and it exists ( )jα  and r in { }0+
  (with r v< ) such as 

( )1 1
0

1 j u

j

v Nv n v j n r
i i u u ij u N

v
f f C G f

j
α− − − −

= =−

− 
∂ = ∂ ∂ 

 
∑ ∑ . 

In addition, one has to define ( )m− s  as: 

( ) ( ) ( )( ) ( ){ }( ){ }1
m m

k kk k
f f Ker Ker− − + −

∈ ∈ −
= ∈ ∉ Ψ Ψ

   s S  (10) 

or with the energy operators ,k iψ +  and ,k iψ −  defined in (8) 

( ) ( ) ( )( ) ( )( ){ }( )( )[ ]{ }, ,1, , 1
m m

k i k ii m k k
f f Ker f Ker fψ ψ− − + −

∈ ∈ ∈ −
= ∈ ∉





  

s S    (11) 

( ).Ker  is the notation for the kernel associated here with the operators k
+Ψ , 

k
−Ψ , ,k iψ +  and ,k iψ −  ( k  in  ) (see [2], Properties 1 and 2). By definition, one 

can state that ( ) ( )m m− −  s S . Following Definition 1, the uniqueness of the 
decomposition in ( )m− s  with the families of differential operators can be 
stated as: 

Definition 2. [2] f∀  in ( )m− s , { }0v +∀ ∈ − , n +∀ ∈  and 1n > , the  
families of operators ( )k k

+

∈
Ψ


 and ( )k k

−

∈
Ψ


 ( ( )k k

+

∈
Ψ


 and  

( ) ( ) ( )( ),m m
k k

− − −

∈
Ψ ⊆


  s S  decompose uniquely v n

i f∂  in m , if for any  

family of operators ( ) ( ) ( )( ),m m
k k

S − −
∈

⊆   S S  decomposing v n
i f∂  in 

m , there exists a unique couple ( )1 2,β β  in 2m  such as: 

( ) ( ) ( )1 2 ,k k kS f f f kβ β+ −= Ψ + Ψ ∀ ∈          (12) 

Two important results shown in [2] are: 
Lemma 1 For f  in ( )m− S , the family of DEO k

+Ψ  ( k∈ ) decomposes 
v n
i f∂ , { }0v +∀ ∈ − , { }0,1n +∈ −  and [ ]1, ,i m∈ 

. 
Theorem 1. For f  in ( )m− s , the families of DEO k

+Ψ  and k
−Ψ  ( k∈ ) 

decompose uniquely v n
i f∂ , { }0v +∀ ∈ − , { }0,1n +∈ −  and [ ]1, ,i m∈ 

. 
The Lemma 1 and Theorem 1 were then extended in [3] to the family of 

generalized operator with : 
Lemma 2. For f  in ( )m

p
− S , p  in + , the families of generalized energy 

operators [ ]. p

k

+
 
   ( k∈ ) decompose v

i∂  [ ] 1

1

n
pf

+−     
 { }0v +∀ ∈ − , 

{ }0,1n +∈ −  and [ ]1, ,i m∈ 
. 

Theorem 2. For f  in ( )m
p
− s , for p  in + , the families of generalized 

operators [ ]. p

k

+
 
   and [ ]. p

k

−
 
   ( k∈ ) decompose uniquely [ ] 1

1

n
pv

i f
+−  ∂    

 

{ }0v +∀ ∈ − , { }0,1n +∈ −  and [ ]1, ,i m∈ 
. 

( )m
p
− S  and ( )m

p
− s  ( p  in + ) are energy spaces in ( )m− S  defined 

in the next section. 
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Remark (5) One can extend the Theorem 1, Theorem 2, Lemma 1 and 
Lemma 2 for nf  with n  in   following previous discussions in [2] (Section 
3, p.74) and [3] (Section 4). n  is here restricted to { }0,1+ −  in order to easy 
the whole mathematical development. 

3.2. Energy Spaces in ( )mS−   

Let us introduce the energy spaces and some properties. 
Definition 3. ([1], Definition 3) The energy space ( )m

p
− E S , with p  in 

+ , is equal to { }0
v

p pv +∈
=



 E M . 

With ( )v m
p

− M S  for v  in +  defined as 

( ) [ ] [ ] ( )

{ } [ ]

1 1
, , ,

, 0 , 1, ,

n
p pv m k m

p ig g f f k

k v n i m

+ +
− − +

+

     = ∈ = ∂ ∈ ∈      
∀ ≤ ∈ − ∈ 




  



M S S
 (13) 

The energy spaces, ( )m
p
− S  and ( )m

p
− s  ( p +∈ ) , cited in Lemma 2 and 

Theorem 2 are defined: 

( )
{ }

( ) ( ) [ ][ ]

[ ]{ }

0

1, , ,

1 ,

m i
p p p

i

pm m
p p i m k k i

p

k k i

f f Ker f

Ker f

+

−

∈

+
− −

∈ ∈

−

∈ −

  = = 
  
    = ∈ ∉     

            









 











 

S E M

s S  (14) 

Remark (6) Definition 3 does not follow completely Definition 3 in [1], 
because the energy space v

pM  is defined here k v∀ ≤ , and only for k v=  in 
[1]. 

Remark (7) In the previous definition, { }0p
∞ =M  ( p +∀ ∈ ). Also, 

( )m
p p
∞ −⊂ M S , whereas ( )m

p p
∞ −⊂/ M S  in [1] and [3]. The inclusion does not 

change Lemma 2 and Theorem 2 (i.e. ( )m
p p
∞ −⊂/ M s ). The justification of not  

including this space was only based on the applications of the theory in [1] and 
[3] which is not justified in this work. 

We can now state some properties associated with the energy spaces on 

( )m− S . 
Properties 2. v∀  in + , and in particular 1v , 2v  in +  (with 1 2v v< ), 

p  in + , we have the following inclusions: 
• ( )v v m

p  M H  

• 2 1v v
p pM M  

• { } ( )0
0

v m
p pv +∈
=



   E M H  

Proof. 
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1) Let us recall the definition of the Hilbert space on m  according to 
Appendix I, Definition I.1 and Definition 1. 

( ) ( ) ( ){ }2 2 ,v m m mf L D f L vα α= ∈ ∈ ∀ ≤  H     (15) 

Looking at the definition of the energy space v
pM  and ( )v mH , one can 

notice the similitude. However , the multi-index derivative Dα  ([21], chap. 1.1)  

contains also the cross-derivatives (e.g., 
2

1 2t t
∂

∂ ∂
), whereas there are no cross-  

derivatives in the definition of v
i∂  at the beginning of Appendix I. Thus, the 

energy spaces v
pM  ( p +∈ , { }0v +∈ − ) is defined without the cross- 

derivatives. In addition with Properties 1, ( ) ( )2m mL−   S . Thus, by 
definition we have the relationship ( )v v m

p  M H : 
2) With Remark (3), we know that for 1 2v v< , ( ) ( )2 1v vm m⊂ H H . Now, 

with 1), ( )1 1v v m
p  M H  and ( )2 2v v m

p  M H . Now by definition of 1v
pM  

and 2v
pM , ( )1 2 2v v vm

p p=M H M . Finally, 2 1v v
p pM M . 

3) From Remark (3), ( ) ( )0 2m mL= H , ( ) ( )2m mL− ⊂ S  and (by defi- 
nition of the energy space) { } ( )0

v m
p pv +

−
∈ −

=
   E M S  ( p +∈ ). Thus, 

{ } ( )0
0

v m
p pv +∈ −
=
   E M H  ( p +∈ ). 

Furthermore, Appendix III discusses the relationship between the subspaces 
v
pM  and 1

v
p−M  ( p +∈ ). Finally, because we are studying functions and 

operators in subspaces of ( )m− S  with )()( 2 mm L  ⊂−S , one need to 
extend Proposition 1 in [1] and [3]. 

Proposition 1. If for n +∈ , ( )n mf −∈ S  and analytic; for any  
( ) 2,i ip q ∈  and [ ],i i iq pτ ∈  ( [ ]1, ,i m∀ ∈ 

), and ( )nf  is analytic, where 

( )( ) ( )2 di

i

n n
i i iq

f f t t
τ

τ = < ∞∫              (16) 

then 

( )( ) ( )( ) ( )( ) ( )2

0 !i

k
i in n k n

i i t i
k

p q
f p f q f q

k

∞

=

−
= + ∂ < ∞∑      (17) 

is a convergent series. 
Proof. The proof of Proposition 1 for i equal 1 is given in [1] (p.4). The 

extension of the proof for the case i equal m is straightforward with the general 
definition for any ( ) 2,i ip q ∈  and [ ],i i iq pτ ∈  ( [ ]1, ,i m∀ ∈ 

). 

4. Multiplicity of the Solutions in ( )S− m  

To recall [1], a possible application of the theory of the energy operators is to 
look at solutions of a given partial differential equation for solutions in ( )m− S  
of the form ( )v n

i f∂ . Instead of solving the equation for specific values (e.g., 
boundary conditions), the work in [1] ([1], Theorem 1 and corollary)defines the 
concept of multiplicity of solutions in ( )m− S  ( [ ]1,2m∈ ) such as the study of 
the multiple solutions of a PDE based on the definition of the energy spaces pE  
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( p +∈ ). One way to understand this concept, is to study the convergence of the 
development in Taylor series of the energy function associated to a nominated 
energy space. It was shown in [1] that taking into account additional terms of 
the Taylor series leads to define additional solutions of the wave equation (see 
Section 4 [1]). In this section, we extend this concept to ( )m− S  ( 0m∈ ) and 
we reformulate the results from[1] for the solutions in the subspaces  

( ) ( )2v m m
p p L−⊂ ⊂ ⊂ M E S  ( p +∈ , v +∈ ). 

Let us define any PDEs of the form: 

[ ]

( ) ( )
0, , 0,

,

,

jv
ij ij i m

m m

ij j

a g

g

a v

+∈ ∈

−

+

 ∂ =

∀ ∈ ⊆

∀ ∈ ∈

∑ ∑


 

 

A S                   (18) 

Thus, all the solutions are here defined in ( ) ( )m m−⊆ A S . Now, we are 
interested in the solutions which can be defined on the energy spaces pE   
( p +∈ ). In other words, ( ) { }m

pp +∈
≠ ∅

 A E . In particular, we choose the 

solution ( )0 m
pp

g +∈
= ∈

 A E . Furthermore, one can define  

( )m
pp

g +∈
∈

 A E , such as v +∃ ∈  for ( )m v
pp

g +∈
∈

 A M . In other 

words, ( )mf −∃ ∈ S  and { }0n +∈ − , such as [ ]
1

n
pg f

+  =    
. Now, one can 

then state a general theorem of multiplicty of solutions based on [1]. It follows: 
Theorem 3. (Multiplicity of Solutions in m ) If ( ) ( )m m−⊆ A S  is a 

subspace of all the solutions of a nominated linear PDE. For p +∈ , g  is in 

pE . Then, g  is a solution for this linear PDE if and only if: 
1) (General condition to be a solution) ( ) { }m

p ≠ ∅A E . 

2) (Solutions in ( )m− S ) ( )m
pg∈ A E , m +∃ ∈  such as 

( )( )supm g=  . 

3) (Multiplicity of the solutions) If v
pg∈M  ( v +∈ ), ( )mf −∃ ∈ S  and  

{ }0n +∈ − , such as [ ]
1

n
pv

ig f
+  = ∂    

 ( [ ]0, ,i m∈ 
) and k v∀ ≥ , k +∈ , 

[ ] ( )
1

n
pk m

i pf
+  ∂ ∈   

A E . 

4) (Superposition of solutions and energy conservation ) If ( )m
pF ∈ A E , 

with [ ], 1

n
pk

ik k vF f+

+

∈ ∀ ≥
  = ∂    

∑   such as [ ]
1

n
pk k

i pf
+  ∂ ∈   

M  ( [ ]0, ,i m∈ 
), 

then ( )F < ∞ . 

Proof. The proof is the generalization of what was already written in [1] (see 
Theorem 2 in [1]) for the case m equal 1. Here is the generalization to m. 

1) This is the definition of a solution for a nominated PDE with solutions in 

( )mA  and in the energy space pE . 
2) ( ) ( )2m m

pg L∈ ⊂


 A E , thus ( )g < ∞ . With Proposition 1, it  

https://doi.org/10.4236/jmp.2017.810100


J.-P. Montillet  
 

 

DOI: 10.4236/jmp.2017.810100 1710 Journal of Modern Physics 
 

means that for any ( ) 2,i ip q ∈  and [ ],i i iq pτ ∈  ( [ ]1, ,i m∀ ∈ 
) 

( )( ) ( )2 di

i
i i iq

g g t t
τ

τ = < ∞∫                  (19) 

Thus, following [18], one can define im ∈  such as  

[ ] ( )( ),sup
i i ii iq pm gτ τ∈=   and then we define [ ]1, ,max ii mm m∈=



. With our 
notation, it is equivalent to write ( )( )supm g=  . 

3) It is sufficient to show that for v +∈ , k v∀ ≥ , ( ) { }m k
p ≠ ∅A M . 

Now, with the definition ( ) { }m
p ≠ ∅A E , and ( ) { }m k

p ≠ ∅A M . In 

addition, { }0p
∞ =M , k

p p
∞ ⊂M M  ( k v∀ ≥ ) and ( )0 m k

p∈ A M . The interest  

of this statement is the function ( )v m
i h

−∂ ∈ S  such as k +∃ ∈  with k v≥   
and 0k

i h∂ = . In particular, if we introduce a numerical approximation in order 
to get the condition ~ 0k

i h∂ . In other words,  

{ }~ 0 , 1, , 0, such ask k
i ih k k h+ +∂ ↔ ∃ ∈ ∀ ∈ > ∂ ≤       (20) 

In some examples in Section 4 in [1] and Section 6 in [3], it is shown that the 
evanescent waves when solving the wave equation for specific solutions, is a 
particular example of those functions. 

4) The proof follows [1] (Theorem 2). This statement is to guarantee that 
there is a finite sum of energy with the superposition of multiple solutions. Thus 
with the development in statement (2.), one can use the Minkowski inequality 
(e.g, [22], Theorem 202) for iτ  in [ ],i ip q  ( [ ]1, ,i m∀ ∈ 

) 

( )( ) ( )
2

1,

di

i

n
pk

i i i ip
k k v

F f t t
τ

τ
+

+

∈ ∀ ≥

   = ∂      
∑∫


  

( )( )( ) ( )
0.52

0.5

1,

di

i

n
pk

i i i ip
k k v

F f t t
τ

τ
+

+

∈ ∀ ≥

     ≤ ∂        
∑ ∫


  

( )( )( ) ( )
0.5

0.5

1,

n
pk

i i i
k k v

F fτ τ
+

+

∈ ∀ ≥

      ≤ ∂          
∑


   

( )( )( )0.5 0.5

,
i k

k k v

F mτ
+∈ ∀ ≥

≤ ∑


                    (21) 

with [ ] ( ),
1

sup
i i i

n
pk

k i iq pm fτ τ
+

∈

      = ∂          
 . Thus, (4.) stands if and only if 

0.5
, kk k vm+∈ ∀ ≥

< ∞∑  .  As k +∀ ∈ ,  k v∀ ≥ ,  km  is in + ,  it then exists 
0.5

,sup kk k vM m+∈ ∀ ≥
= ∑  . One possibility is ok∃  in +  such as ok k∀ > , then  

0km = . 

5. Some Applications 

This section focuses on the application of the energy space theory. The first 
section is the study of the concept of multiplicity of solutions with a simple 
mathematical example using the wave equation. Then, the second section is 
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discussing the application of this concept within the Woodward effect [4] [13] 

5.1. Energy Variation and Wave Equation 

As a simple case of linear PDE, the wave equation with the particular solutions 
of the form of evanescent waves, was already discussed in Section 6 of [3] and 
[1]. However, it is an interesting example to apply and understand the concept 
of multiplicity stated in Theorem 3. From [23], the wave equation can be 
formulated in 2  (with t and r the time and space variables): 

( ) ( )

[ ] [ ] ( )
[ ] [ ]

2 2
2

3
1 2 1 2 1 2

0 0 1 2

1, , 0,

0, , , , , , ,

0, , ,

r tg r t g r t
c

t T r r r r r T r r

t T r r r

∂ − ∂ =
 ∈ ∈ ∈ <
 ∈ ∈


           (22) 

c is the speed of light. Note that the values of t and r are restricted to some 
interval, because it is conventional to solve the equation for a restricted time 
interval in +  and a specific region in space. According to the previous section, 
we are here interested in the solutions in the energy (sub)space k

pM , of the kind  

( ) [ ] ( )
1

, ,
n

pk
tg r t f r t

+  = ∂    
 ( n  i n  { }0+ − ,  p  i n  + ,  k  i n  + ) . 

Furthermore, the relationship ( ) ( )2 2k
p L−⊂ ⊂ M S  imposes that the solu- 

tions should be finite energy functions, decaying for large values of r and t. It 
was previously underlined in [1] and [3] that planar waves should be rejected, 
because this type of solutions does not belong to ( )2L  . However, evanescent 
waves are a type of solutions included in ( )2− S  and considered in this work. 
They are here defined such as: 

( ) ( ) ( )( ){ }
[ ] [ ] ( )

2 1

2
1 2 1 2 1 2

, exp exp ,

0, , , , , ,

f r t Real A u r i t u r

t T r r r r r r r

ω = −

∈ ∈ ∈ < 

          (23 

2 1i = − , 1u  and 2u  are the wave numbers, ω  is the angular frequency and 
A  is the amplitude of this wave [23]. Assuming ω  and ( 1u , 2u ) known, one 

can add some boundary conditions in order to estimate 1u , 2u  and A . 
Furthermore, a traveling wave solution of (19) should satisfy the dispersion 
relationship between 1u , 2u  and ω  [23]. However, our interest is just the 
general form assuming that all the parameters are known. For 0p = , the type of 
solutions in 0

kM  are: 

( ) ( ) ( )
( ) ( )( ) ( )

[ ] [ ] ( )
[ ] [ ] { } { }

0 0

0 2 1 0

3
1 2 1 2 1 2

0 0 1 2

, , ,

, , ,

0, , , , , , ,

0, , , , 0 , 0

kk n n
t

kk n n
r

f r t i n f r t

f r t n u iu f r t

t T r r r r r T r r

t T r r r n k

ω

+ +

∂ =

∂ = −

 ∈ ∈ ∈ <


∈ ∈ ∈ − ∈ −



 

       (24) 

In 1
kM , one can then write the type of solutions 
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( )( ) ( )

( )( ) ( ) ( ){ }
( )( ) ( )( ) ( ){ }

[ ] [ ] ( )
[ ] [ ] { } { }

1
1, 0 0

1,

2
1, 0 0

2
1, 0 2 1 0

3
1 2 1 2 1 2

0 0 1 2

, ,

, 2 ,

, 2 ,

0, , , , , , ,

0, , , , 0 , 0

k k
t t t

t

k
t t

k
r r

f r t f r t

f r t Real i k f r t

f r t Real k u iu f r t

t T r r r r r T r r

t T r r r n k

ω

+
+

+

+

+ +

   ∂ Ψ = ∂      

∂ Ψ =

∂ Ψ = −

∈ ∈ ∈ <

∈ ∈ ∈ − ∈ −



 

      (25) 

Let us consider the form of solutions which propagates in a closed cavity (e.g., 
closed wave guide [23]). One possible solution is the evanescent wave described 
in (20). Now, if f  and ( )f  are analytic in 2 , with Proprsition 1 we can 
assume that f  is finite energy (and more generally in ( )2− S ) with a wise 
choice on the parameters A , 1u , 2u  and ω . One can estimate the difference 
of energy in time over dt  inside the cavity at a specific location 0r  ( 0r  in 

[ ]1 2,r r ) such as 

( )( ) ( )( )2
0 00
, , d

T
f r T f r h h= < ∞∫  

( )( ) ( )( ) ( )( ) ( )2
0 0 0

0

d
, d , ,

!

k
k
t

k

t
f r T t f r T f r T

k

∞

=

+ = + ∂ < ∞∑   

( )( ) ( )( ) ( ) ( )( )2 1
0 0 0 1, 0

1
, d , , d ,k

t t
k

f r T t f r T f r T t f r T
∞

− +

=

+ = + + ∂ Ψ∑   

( )( ) ( )( ) ( )2
0 0 0, d , , df r T t f r T f r T t+ +             (26) 

Here the symbol ‘  ‘ means that 

( )( )( ) ( )1 2
1, 0 0, 1, , 0 | , ,k

t tk k f r T f r T+ + − +∃ ∈ ∀ ∈ > ∂ Ψ <      (27) 

Now, let us do a hypothesis that ( )( )0 , df r T t+  increases significantly over 
dt  modifying the approximation in (24) 

( )( ) ( )( )1
1, 0 1, 0, 1, , 1| , ,k

t t tk k f r T f r T+ + − + +∃ ∈ ∀ ∈ > ∂ Ψ < Ψ      (28) 

and then,  

( )( ) ( )( ) ( ) ( )( )
2

2
0 0 0 1, 0

d, d , , d ,
2t
tf r T t f r T f r T t f r T++ + + Ψ   (29) 

To recall that ( )2 0
0,f r t ∈M , ( )2 1

0,t f r t∂ ∈M  and ( )( ) 0
1, 1,t f r t+Ψ ∈M , and 

using Theorem 3, one can take into account solutions in those subspaces. The 
multiplicity of the solutions due to the variation of energy can be formulated as 
an approximation for taking into account additional solutions produced by the 
wave equation. 

Remark (8): In [1], the general idea was to look for the solutions of linear 
PDEs in ( )− S  associated with energy subspaces ( )p

− s  ( p +∈ ) in order to 
apply Theorem 1 in [1], which is here generalized in Theorem 3 for m  
( m +∈ ). The purpose was to find the subspaces reduced to { }0  when 
studying the convergence of the Taylor series of the energy functions. However, 
the redefinition of the energy subspaces k

pM  within the Sobolev spaces defined 
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in Section 3 allows us to look for solutions in ( )m
p
− S  in order to use Lemma 2. 

Because of the inclusion of the energy spaces shown in Properties 2 using the 
Sobolev embedding (e.g., Theorem I.1 in Appendix I) such as 1k k

p pk+ ⊂M M  
( k +∈ , p +∈ ), { }0 k

p p
∞ = ⊂M M . 

Definition 4. (Energy Parallax) Considering a linear PDE with some solutions 
in ( )mA  such as ( ) ( ) { }m m− ≠ ∅ A S . Furthermore, if it exists p  and 

v +∈  such as ( ) { }m v
p ≠ ∅A M , then we associate the energy ( )f  for 

( )m v
pf ∈ A M , such as one can estimate the variation  

( ) ( )( ) ( )( )( )d d df f q q f q q= + −    over an elementary quantity dq  (e.g., 

space or time). If ( )d f  is not negligible ( m∃ ∈  such as 1  and 

( )d f >  ), then one can consider additional solutions in ( ) 1m v
p
+

A M . 

5.2. Variation of EM Energy Density and the Woodward Effect 

In this section, the theory of energy space is applied to the possible variations of 
electromagnetic energy density due to, for example, skin depth effect [23] inside 
some conductive material. Beyond this application, the interest is to give a 
physical meaning of taking into account those additional solutions in various 
energy spaces. The second part is dedicated to the Woodward effect and the 
possible relationship with the variation of EM energy density in some specific 
settings. 

5.2.1. Variation of EM Energy Density 
Thus, let us formulate the variation in time of energy density (u) at the second 
order with a Taylor series development such as: 

( )
2

2 2dd d d
2t t
tu u t u o t= ∂ + ∂ +                 (30) 

o  is the Landau notation to omit higher order quantities. Note that at the  

first order d
d t
u u
t
= ∂ . The higher orders term are based on the assumptions that  

the EM waves inside the skin layer of the copper plate are evanescent waves and 
thus functions in the Schwartz space ( ( )4− S -with 3 dimension variables and 
considering also the time ) [23]. As discussed before, those solutions are finite 
energy functions and in ( )4L   (i.e. following [1] and [3], 

( )( )0 0 0, , ,u f x y z T= < ∞  at some given point in the skin layer defined by the 
coordinates 0 0 0, ,x y z ). Now, using the Lemma 1 and the space 0

kM  in Section 
3, we can state in ( )4− S  

( ) ( ){
( ) ( )( )( )

( ) { } [ ] ( ) [ ] }

4
0 0 0 0

1 2
0 0 0 1 0 0 0

24
0 0 0

, , ,

, , , , , , ,

, 0 , , 0, , , 0,

k k n
t

k n
n t

n

g g f x y z t

f x y z t f x y z t

f n z L x y a

α

α

−

− − +

− +

= ∈ = ∂

= ∂ Ψ

∈ ∈ − ∈ ∈ ∈



  

M S

S

(31) 

Here f  is either the electric or magnetic field (i.e. the absolute norm of E

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and B


 respectively). With the concept of multiplicity of solutions (e.g., 
Theorem 3). If g  is a general solution of some linear PDEs, then nf  can be 
identified as a special form of the solution (conditionally to its existence ). 

Now considering the wave equation, the electric field and magnetic field are 
solutions and belong to the subspace 0

kM  and associated with the variation of 
energy density tu∂ . Furthermore, we can consider the solutions in 1

0M  
associated with the variation of energy density 2

t u∂ , which can be explained 
with the concept of multiplicity of solutions. The solutions of interest in 1

0M  
are for the electric field tg E= ∂  and the magnetic field tg B= ∂ . The Taylor 
Series development of the energy of (for example) the electric field on a 
nominated position in space (i.e., 0 0 0, ,x y z ) and in an increment of time dt : 

( )( ) ( )( ) ( )( ) ( )2
0 0 0 0 0 0 0 0 0

0

d
, , , d , , , , , ,

!

k
k
t

k

t
E x y z T t E x y z T E x y z T

k

∞

=

+ = + ∂ < ∞∑   

( )( ) ( )( ) ( )2
0 0 0 0 0 0

0

d
d , , , d , , ,

!

k
k
t

k

t
E x y z T t E x y z T

k

∞

=

+ = ∂∑    (32) 

Finally one can write the relationship with the energy density following (26) 
and the previous Taylor series development for the electric and magnetic field: 

( )( ) ( )( )

( ) ( ) ( )

0 0 0 0 0 0
0

0

2
2 2 2 2

0 0 0 0 0 0 0
0

d , , , d d , , , d10.5
d d

1 d d0.5 , , , , , , d
2 6t t

E x y z T t B x y z T t
t t

t tE x y z T B x y z T u u o t

µ

µ

 + +
 +
 
 
 

= + + ∂ + ∂ + 
 

 




(33) 

Therefore, taking into account the second order term of the energy density 
ut

2∂  means that additional solutions should also be considered in the EM 
modeling. Note that in Appendix IV, we are taking an example of evanescent 
waves inside a copper wall (i.e. skin depth effect [23]) and try to give further 
meaning to the consideration of higher order derivatives of the EM energy 
density where the additional solutions are defined with the energy spaces (e.g., 

t E∂  and t B∂  in 1
0M ). 

5.2.2. Derivation of the Woodward Effect Using the Electromagnetic 
Energy Density 

This section focuses on the derivation of the Woodward effect created in a 
asymmetric EM cavity (i.e. frustum) due to EM waves reflected on the cavity’s 
wall. Thus, the assumption is that the EM energy density variation results from 
the evanescent waves taking place in the skin depth of the asymmetric EM 
cavity’s walls. 

1) Assumptions with the energy momentum relationship 
When the Woodward effect was established in [4] [13], the authors implicitly 

assumed the rest mass of the piezoelectric material via the famous Einstein’s 
relation in special relativity 2mc=  (   the rest energy associated with the 
rest mass m ) and its variation via electrostrictive effect. 

Here, the system is the asymmetric EM cavity. The rest mass is all the particles 
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within it at time 0t  when no charges are on the cavity’s walls. It excludes the 
photons considered with a null mass. Thus, the main assumption is that the EM 
excitation on the walls creates electric charges (i.e. electrons) which makes the 
rest mass varying with time. This assumption is the same as the mass variation 
of a capacitor between the charge and discharge times [24]. It allows us to state 
the variation of rest energy such as: 

( ) ( ) ( ) ( )( ) 2 2d d d dt t t m t t m t c mc= + − = + − =           (34) 

Finally, the variation of rest energy d  is assumed to be equal to the 
variation of EM energy density ( du ) resulting from the charges within the skin 
depth of the walls. We neglect any electrostrictive effects compared to the 
variation of EM energy density. 

Note that at the particle level, the rest mass should satisfy the energy momen- 
tum relationship ( eu ) for a free body in special relativity [25]: 

( ) ( )222 2

2

e e

e

u pc m c

up v
c

= +

=
                    (35) 

with p  the momentum and em  the rest mass of the particle associated with 
the total energy eu . The particle is accelerated via the Lorentz force applied to 
the whole cavity with obviously v c . Thus, we have also the relationship 

( )22
ep u c< . In the remainder, we also use the elementary variation δ  which 

becomes d  for an infinitesimally small variation. 
2) Derivation of the Woodward effect and relationship with EM energy 

density 
If we define the mass density such as m Vρ = , then from [13], one can write 

the elementary mass variation per unit of volume 

( )~ d infinitesimally small variationm
V
δ

δρ ρ=  

( )22
2

1 1 1d
4π t tG

ρ ρ ρ
ρ ρ
 

= ∂ − ∂ 
 

                  (36) 

Let us define the the rest energy 2cρ= , then 

( )
( )22

2 22

1 1 1d
4π t tG c c

ρ
ρ ρ

 
 = ∂ − ∂
 
 

   

( )
( )22

2

1 1 1d
4π t tG

ρ
 

= ∂ − ∂ 
  

 
 

                  (37) 

In some particular cases such as an EM cavity, we assume that the variation in 
time of the rest energy is equal to the variation of EM energy density u  (i.e. 

t tu∂ ∂ ), but the rest energy is much bigger than the EM energy density 
u . It allows then to state the relationship between the Woodward effect and 

the EM energy density 
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( )
( )22

2

1 1 1
4π t td u u

G
ρ

 
= ∂ − ∂ 

   
                (38) 

The EM energy density u  follows the general definition of the sum of energy 
density from the electric ( Eu ) and magnetic ( Bu ) fields [23]. Finally, (38) can be 
seen as the definition of the EMG coupling.  

6. Conclusions  

This work generalizes in the Schwartz space ( )m− S , the framework on 
conjugate Teager-Kaiser energy operators established in [2] and [3] for the case 
m in [ ]1,2 . The concept of multiplicity of solutions defined in [1] is also 
redefined here in Theorem 3. However, this concept uses the notion of energy 
spaces ( v

pM  ( p +∈ , v +∈ ), subspaces of ( )− S  defined previously in [1] 
and [3]. In order to generalize their definition as subspaces of ( )m− S , the 
theory has been extended to some properties on the Hilbert spaces ( )(1

mv H ) 
on )(2 mL  . In particular, we show in Properties 2 that 2 1

v v
p pM M  ( 1 2v v< ) 

and the inclusion ( ) ( )2
1 1

v v m m
p L   M H . 

The concept of multiplicity of solutions focuses on, generally speaking, 
looking for solutions of a given linear PDE specifically in the energy spaces. In 
this way, it is not following the classical way of solving a linear PDE with 
boundary conditions. Three examples illustrate this concept. The first one 
investigates some type of solutions (e.g., evanescent waves) of the wave equation 
when analysing the Taylor series development of the energy function associated 
with an evanescent wave. We then formulate another concept: the energy 
parallax. It is defined mathematically in Definition 4. Under some specific 
circumstances (e.g., the energy function exists), we show that the variations of 
energy locally in a predefined system, should lead to include additional solutions 
in the energy spaces with higher order v (in + ). The second example is based 
on the local variations of EM energy density, which allows to define waves which 
are first order derivative of the EM field. This example is further explored in 
Appendix IV. Finally, the last example is the derivation of the Woodward effect 
with some strong hypothesis in order to include the EM energy density in the 
specific case of asymmetric EM cavity. We introduce in the Woodward effect, 
the first and second order derivative of the EM energy density, which can be 
interpreted such as a theoretical definition of an Electromagnetic and Gravita- 
tional coupling. 
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Appendix I: Generalities on Sobolev Spaces 

A Sobolev space is a vector space of functions equipped with a norm that is a 
combination of Lp-norms of the function itself and its derivatives up to a given 
order. Intuitively, a Sobolev space is a space of functions with sufficiently many 
derivatives for some application domain, such as partial differential equations, 
and equipped with a norm that measures both the size and regularity of a function. 
Sobolev spaces are named after the Russian mathematician Sergei Sobolev. 

Definition I.1. [14] Let mΩ⊆   ( m +∈ ) be open. The Sobolev space 
( ),k pW Ω  ( k∈ , [ ]1,p∈ ∞ ) is defined as: 

( ) ( ) ( ){ }, ,k p p pW f L D f L kα αΩ = ∈ Ω ∈ Ω ∀ ≤         (39) 

with D fα  the α-th partial derivative in multi index notation,  

1
1

n
n

fD f
t t

α
α

αα

∂
=
∂ ∂

. The Sobolev space ( ),k pW Ω  is the space of all locally  

integrable functions f  in Ω  such as their partial derivatives D fα  exist in 
the weak sense for all multi index kα ≤  and belongs to ( )pL Ω  (i.e. pL

f < ∞ ) 
([26], chap. 5). If f  lies in ( ),k pW Ω , we define the ,k pW  norm of f  by 
the formula 

( ) ( ),k p pW L
k

f D fα

α
Ω Ω

≤

= ∑                       (40) 

Now, let us introduce the Fourier transform ( ) ( )1: m m
bL →    as in 

[19] 

( ) ( ) ( )( )e dixf f x x fξ ξ− ⋅

Ω
= =∫                  (41) 

Here ( )m
b   is the space of bounded and continuous functions in m  [17]. 

Note that ⋅  is the scalar product (with x  and ξ  in m ). One can then 
define the Sobolev spaces for mΩ =  , ( ),k p mW   using the Bessel potentials 
and the Fourier transform such as [14] or [17] (chap. 9) : 

( ) ( ) ( ) ( ) ( ) ( ){ }2, , 1 2: 1
kk p m k p m p m p mW H f L f Lξ−  = = ∈ + ∈  

      (42) 

The Bessel potential spaces are defined when replacing k  by any real 
number s . They are Banach spaces and, for the special case 2p = , Hilbert 
spaces . Now, one can state an important result with Sobolev spaces [14] 

Theorem I.1.: ( ) ( ), ,k p m l q mW W⊆  , whenever 0k l> ≥  and  
1 p q≤ < < ∞  are such that ( )k l p m− <  

Proof. The proof of this theorem is rather long and technically delicate which 
is not our focus. Readers interested in this matter should refer to [14] [26] (Chap. 
5) 

Appendix II: Possible Interpretation of the Energy Parallax 
in Modern Physics 

In Section 4, we define mathematically the notion of multiplicity of solutions for 
a given PDE. Through the various examples in Section 5, we define the concept 
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of energy parallax. The general meaning is that additional solutions should be 
taken into account when varying the amount of energy. Those solutions should 
be defined based on the associated energy spaces (e.g., pE , p +∈ ). Now, if we 
replace this concept in modern physics, what is the meaning behind it? 

In modern physics, Energy is a global concept across the whole science. The 
definition varies with for example kinetic energy and potential energy in classical 
mechanics. It relates respectively to the object’s movement through space and 
function of its position within a field [27]. Chemical energy can be defined 
broadly such as the electrical potential energy among atoms and molecules. In 
quantum mechanics, energy is defined in terms of energy operators (e.g., Hamil- 
tonian) as a time derivative of the work function. It allows to define particles at 
nominated energy levels associated with an EM waves emitted at frequencies 
defined by the Planck’s relation. In General Relativity, energy results from the 
product of a varying mass and the square of the speed of light. Energy can 
describe the behavior of a system of two particles (and more). For example, the 
electron-positron annihilation in which rest mass (invariant mass) is destroyed. 
At the opposite, the inverse process (creator) in which the rest mass of the 
particle is created from energy of two (or more) annihilating photons [28]. 

Energy parallax is here defined such as the concept of using additional wave 
functions. For example in Section 5.2.2 increasing the higher order derivatives of 
the EM energy density leads to the consideration of additional waves. The 
energy parallax concept can then help us to state that those additional waves are 
additional excited photons that we must take into account to vary the EM energy 
density. 

Appendix III: Discussion on the Possible Relationship 
between the Energy Spaces v

pM  and v
p

1
1M −

+  

This section follows the development in Section 3.2 and especially Properties 2. 
First, p +∀ ∈ , { }1

v v
p p+ ≠ ∅M M , because ( )0 m−∈ S , and ( p +∀ ∈ , 

v +∈ ) 0 v
p∈M . Thus, 10 v v

p p+∈ M M . 

To recall Definition 2 and Lemma 2, [ ]
1

n
pv

i f
+  ∂    

 can be decomposed with 

the family of energy operators [ ] 1. p

k k

++

∈

      
 ( { }0,1n +∀ ∈ − , [ ]1, ,i m∈ 

, 

p +∈ , { }0v +∈ − ). Thus, one can write ( l v< ): 

[ ] [ ]
1 11

1 1 10

1 j

j

n n l Nv pp pv v j u
i i u i

j u N

v
f f C f

j
α

− +−+ + +
− −

= =−

−           ∂ = ∂ ∂                
∑ ∑    (43) 

Thus, for 1n > , Lemma 2 allows to state that { }, 1
1

v v v n
p p p

>
+ =M M M , with 

, 1v n
p

>M  the subspace of pE , but restricted for n +∈  and 1n > . 
Furthermore, let us define the space ( ),* m

p
− s : 

( ) ( ) [ ][ ]
,*

1, , ,

pm m
p p i m k k i

f f Ker f
+

− −
∈ ∈

    = ∈ ∉       

   s S    (44) 
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Note that ( ),* m
p p
∞ −⊂/ M s , but the bump functions [15] are included in 

( ),* m
p
− s . We can also recall the discussion on 1n =  in [1] and [3], with the 

definition 

( ) ( )
[ ]

,*

1

1, , , , 1m m
p n

p
f p g g n n

f

− + − +

+

 
  ∀ ∈ ∈ ∃ ∈ = ∀ ∈ > 

        

   s S  (45) 

On can also state that [ ]
[ ]

[ ]

3

1
21

1

p

pk k
i i

p

f
f

f

+

+

+

           ∂ = ∂             

 ( k +∈ ) and use the  

Leibniz’s rule for derivations in order to expand the multiple derivatives or the 
decomposition stated in Lemma 2. If we call ,*v

pM  ( p +∈ ), the subspaces of 

( ),* m
p
− s . For all 1g  in ,*v

pM  can be written as a non linear sum of 2g  in 
,*

1
v
p+M . Finally, we can conclude that ,* ,*

1
v v
p p+M M . With the specific extension of 

v
pM  to the case 1n = , we can also conclude 1

v v
p p+M M . In addition, 

( ) ( ),* ,*
1

m m
p p
− −

+  s s  by definition. 

Appendix IV: Consequences in Terms of EM Theory 

We are taking the example of the variation of EM energy density inside a copper 
wall due to planar waves reflecting and refracting on it [23]. To recall Section 5.2, 
the EM field is now including ( E , δE ) and ( B , δB ), contribution of the 
subspaces 0

0M  and 1
0M  respectively when using the concept of multiplicity of 

the solutions (i.e. Theprem 3) for the higher order derivatives of the energy 
density (see (26)). We call the total EM field totE  and totB  inside the copper 
plate (skin layer) with associated permittivity   and permeability µ . They are 
solutions of the Maxwell equations: 

,

,
0,

,

tot
tot

tot t tot

tot

tot t tot

ρ

µ µ

∇ ⋅ = 
∇× = −∂ 
∇ ⋅ =


∇× = ∂ + 

E

E B
B
B E j





                  (46) 

with the principle of charge conservation: 

0t totρ∂ +∇ ⋅ =j                         (47) 

Now, the variation of energy density (26) together with the equation of charge 
conservation is formulated such as: 

d
d tot tot
u
t
+∇ ⋅ = ∇ ⋅P E                      (48) 

tot tot
tot µ

×
=

E BP  is the Poynting vector. Now, writing tot δ= +E E E , 

tot δ= +B B B  and δ  is the first derivative in time ( t∂ ) (i.e. solutions in 1
0M ),  
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then following [23] 

( ) ( ) ( ) ( )1
t t t t tµ

 
+ ∂ ⋅ = + ∂ ⋅ ∇× + ∂ − ∂ + ∂ 

 
E E j E E B B E E    (49) 

using the equalities ( )∇ ⋅ × = ⋅∇× − ⋅∇×E B B E E B  and the Maxwell 
equation t∇× = −∂E B , 2

t t∇×∂ = −∂E B  the previous equation reduces to: 

2

0

t t
t t t

t t
t t

u u
µ µ

ε
µ µ µ

∂ ×∂   ×
⋅ +∇ ⋅ + ∂ + ∂ ⋅ +∇ ⋅ + ∂   

   
∂ × ×∂    ∂ ⋅∂

+∇ ⋅ +∇ ⋅ + + ∂ ⋅∂ =   
   

E BE BE j E j

E B E B B B E E
   (50) 

We can separate in three groups,  

2

t

t t
t t

t t t t
t t

u

u

µ

µ µ

ε
µ µ

 ×
∂ +∇ ⋅ = − ⋅  

  
∂ × ×∂    ∂ +∇ ⋅ +∇ ⋅ = − ⋅∂    

    
∂ ×∂ ∂ ⋅∂  ∇ ⋅ = − − ∂ ⋅∂    

E B j E

E B E B j E

E B B B E E

 

The Poynting vector is defined as 
µ
×

=
E BP  and its derivative  

t t
t µ µ

∂ × ×∂
∂ = +

E B E BP . Thus, the second order term of the energy density is  

the contribution of the EM field generated by t∂ E  and t∂ B  is: 

( )2

0

t

t t t

t t t t
t t

u
u

ε
µ µ

∂ +∇ ⋅ = − ⋅ 
∂ +∇ ⋅ ∂ = − ⋅∂ 


∂ ×∂ ∂ ⋅∂  ∇ ⋅ = − − ∂ ⋅∂    

P j E
P j E

E B B B E E
 

The last line is the contribution from only the fields t∂ E  and t∂ B . 
Finally, the creation of the wave defined by the EM field ( t∂ E , t∂ B ) means 

that some material properties may allow to create two type of EM waves namely 
( E , B ) and ( t∂ E , t∂ B ). 
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Abstract 
The twistor kinematic-energy model of the space-time and the kinemat-
ic-energy tensor as the energy-matter tensor in relativity are considered to 
demonstrate the possible behavior of gravity as gravitational waves that derive 
of mass-energy source in the space-time and whose contorted image is the 
spectrum of the torsion field acting in the space-time. The energy of this field 
is the energy of their second curvature. Likewise, it is assumed that the curva-
ture energy as spectral curvature in the twistor kinematic frame is the curva-
ture in twistor-spinor framework, which is the mean result of this work. This 
demonstrates the lawfulness of the torsion as the indicium of the gravitational 
waves in the space-time. A censorship to detect gravitational waves in the 
space-time is designed using the curvature energy. 
 

Keywords 
Censorship Condition, Contorted Surface, Curvature Energy, Gravitational 
Waves, Matter-Energy Tensor, 3-Dimensional Sphere, Spinor Fields, Twistor 
Kinematic-Energy Model, Weyl Curvature 

 

1. Introduction 

The twistor kinematic energy model could establish to the future-null-infinity in 
the space-time, a quasi-local matter model represented through gravitational 
waves of cylindrical type considering the condition on the spinor fields respec-
tive, in the null-infinity. Here, is obtained the asymptotical flat space-time far 
away of the mass-energy source. 

We consider the Penrose’s definition of the kinematic twistor associated to a 
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2-surface in a general curved space when the total momentum of energy and 
angular momentum to a system in special relativity and in linearized general re-
lativity can be characterized geometrically. Of fact, the geometrical evidence of 
torsion through a contorted surface is wanted. 

We consider a source as total charge depending of ,k a  (Killing vector) of the 
Minkowski space background, modeled this as ,≅ ⊗ ⊗M C2 2S M  which has an 
important analytic system of twistor solution in the same space-time 

.+ −≅ ⊕M S S  Then their system has a complex 4-dimensional solutions family 
( 2≅ C ) and the family defines the 2-surface twistor space ( )T S . 

But, in a surface of arbitrary genus ,g  and of index ( )4 ,− g1  the solution 
is a general twistor solution, which can be given though a model problem be-
tween bosonic fields deduced of the dual problem given by the relation: 

,βγ β γ
αβ γα α γ γ αΣ = Σ' '

' ' 'A I  A I                   (1) 

to the energy-matter tensors ,abT  and the integral solution given to the kine-
matic tensor ,αβA  through the energy-matter tensor, 

1 ,
4

α β
αβ σ σ

π Σ

= =∫ ∫ab cd a b
1 2 abcd ab

S

A Z Z R f d T k d
G

           (2) 

The exhibition of the kinematic tensor happens when the special surface in-
side space-time background ,M  results to be the product ,+ −⊗S S  of the 
twistor 2-surface ( ) ,T 1S  and also (2) defines a kinematic twistor tensor ,αβA  
as element of this symmetrized product of two 2-surfaces  

( ) ( )( ) ,αβ ∈ ⊗T TA S S *  which is a twistor space of (valence-2) and symmetric 
dual twistor. 

Proposition 1.1. The twistor kinematic tensor ,αβA  is an element in duality 
of the energy-mass tensor abT .  

We observe the following figure establishing the duality signed in the proposi-
tion 1.1. (see Figure 1). 

Proof. Their demonstration is given considering the relation 
,βγ β γ

αβ γα α γ γ αΣ = Σ' '
' ' 'A I  A I  where the second member can be had as a spinor using 

the integral (2): 

1 ,
4

Bα β
αβ ω ω σ

π
= ∫ A cd

1 2 ABcd 1 2A Z Z R d
G

                   (3) 

 

 
Figure 1. Duality between tensors ,αβA  and .abT  
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which, using the spinor framework [1] [2] inside the integral (3) we have: 

( ) ( )( ) ( ){ }0 1 1 0 1 1
1 1 11 2 1 2 1 2 21 3 1 2

1 ,
4

α β
αβ φ ψ ω ω φ ψ ω ω ω ω φ ψ ω ω

π
= − + + Λ − + + −∫ A B

1 2 01 2A Z Z dS
G

 (4) 

which is simplified using the spinor frame equations1:  

( ) ( )
( ) ( )

0 1 2

1 0 3 2 11

,

,

π ρπ ψ φ ω ψ φ ω

π ρ π ψ φ ω ψ φ ω
′ ′

′ ′

℘ + = − −Λ + −

′ ′℘ + = − + − −Λ

1 0
11 1 01

1 0
21

i i

i i
          (5) 

to the integral 

( )2 1 2
1 1 0 ,

4
α β

αβ π π π π
π ′ ′ ′
−

= +∫ 1
1 2 0

iA Z Z dS
G

                 (6) 

which establishes the required duality. ◆  
Of the integral involved in (6), we note that the twistor kinematic tensor 

,αβA  depends of ,S  which has more mean, that is to say, depends on the first 
and second fundamental forms of S.  

This means the presence of curvature inside spinor terms in the integrating of 
(6). This explains only the dependence of the energy due to curvature. Then to 
spinor fields of the form ( ),ω π ′

A
A , we have the quantity [1]: 

,ω π ω π′′ ′Σ = +A A
A A                      (7) 

which is constant to constant curvature space. However, for a 2-surface in a 
general space-time ,M  there is no reason to that (7) could be constant. Like-
wise, we have the following proposition: 

Proposition 1.2. (7) is constant for every 2-surface twistor if and only if the 
2-surface with their field ( ), ,ω π ′

A
A  is embedded in a conformally flat space- 

time modulo certain genericity conditions. 
Then in little words, the proposition 1.2. prepares a detection condition from 

a contorted property of the 2-surface when is affected by the presence of a field 
source. This in the conformally conditions detects curvature which is measured 
and modeled in the spinor waves as is showed in Figure 1 in the 2-surface twis-
tor of the twistor kinematic tensor αβA . In our study of spectral curvature we 
can define this measure as curvature energy obtained through twistor frame of 
the energy-mass tensor, as in the integrals (3) and (6). These have involved a 
curvature tensor, which has curvature energy as spinor field energy or spinor 
wave, this last understood as energy manifestation in the kinematic tensor space 

( ) ( )( ) .⊗T TS S *  
Likewise, the curvature energy as spectral curvature in the twistor kinematic 

frame is the curvature in twistor-spinor framework.  

 

 

1The twistor equations to valence-2 on symmetric spinor ,ωAB  can be written as: 

,ω′ ′∇ = − ∈A BC A(B C)
A Ai k  

which has a 10-dimensional complex solutions space. Their solution space is spanned by fields 

,ωAB  of the form ,ω ω(A B)
1 2  (such and is showed in Figure 1), where each ,ωA

i  satisfies the twistor 
equation 

,ω π∇ = − ∈A B AB
A' A' i  

whose solutions defines a 4-dimensional complex vector space which is the twistor space T.  
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Def. 1.1. A 2-surface ,S  is contorted if their embedding involves one com-
ponent of the twistor space ( )T S . 

Remember that ,αβA  is the twistor kinematic tensor of the given source. 
Due to that the twistor equations to spinor fields ,ωAB  have a 10-dimensional 
complex solution space, ,αβA  apparently has too much information in it. To 
curvature we want solutions provided of the energy-mass tensor. Then for sim-
plification and the spinor framework is obtained the linearized general relativity 
context where the tensor ,abT  must satisfy the equation 

,∇ =a abT  0                          (8) 

thought out as a source for a linearized gravitational field. This will bring a li-
nearized Riemann tensor, which will be agreed to the spinor frame considering 
the components ,ω ′ ′= ∈ab AB A Bf   which relates the spinor field ,ωAB  with the 
Killing vector ,k a  in the twistor equations to twistors of valence-2. Then using 
divergence theorem when ,S  is a 2-surface on the 3-surface ,Σ  as given in (7) 
surrounding the source, we have several censorship conditions designed through 
dominating energy condition of curvature. 

Then the energy of the twistor kinematic tensor that will the energy substan-
tive to measure curvature energy in the case of the twistor-spinor framework, is 
given in energy domain .α βγ

αβ γ≥ ≥NM A Z I Z 0  
The inequality written in the last paragraph conforms the inequalities family 

of Hilbert type in twistor theory required to explain the range or domain of 
energy where can be censed the existence of the massive object that will produce 
the torsion of the space. Then of this torsion will be produced the gravitational 
waves in the space-time far of the massive source, but whose asymptotic beha-
vior helps to the understanding the post-Newtonian limit after of the horizon 
of events of the massive source, when the space-time tends to de Sitter Un-
iverse. 

2. Curvature and Twistor-Spinor Framework 

A result of the curvature digression as an observable of an object obtained 
through integral transform on cycles is the following theorem. 

Theorem 2. 1 (Y. Stropovsvky, F. Bulnes, I. Rabinovich). We consider the  
embedding ( ) ( )( ): .σ Σ→ ⊗T TS S *  The space ( ) ,σ Σ  is smoothly embed-

ded in the twistor space ( ) ( )( ) .⊗T TS S *  Then their curvature energy is the 

energy given in the interval α βγ
αβ γ≥ ≥NM A Z I Z 0.  

Some considerations on the curvature of twistor-spinor framework in a com-
plex Riemannian manifold are necessary to clarify. After we realize the demon-
stration of the theorem 2. 1, which is the central goal of the chapter. 

We consider the twistor fields ,ΨABCD  and ,′ ′ ′ ′Ψ A B C D  satisfying the twistor 
equations 

, 0,′ ′
′ ′ ′ ′∇ Ψ = ∇ Ψ =AA AA

ABCD A B C D 0                 (9) 

whose solutions are given by the twistor contour integrals 
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( )
2

,
ω π ω ω ω ω∂ =

∂ ∂ ∂ ∂
Ψ =

∂ ∂ ∂ ∂∫
1

ABCD A B C D
S

 f z dz            (10) 

and 

( )
2

,
ω π

π π π π′ ′ ′ ′ ′ ′ ′ ′

∂ =

Ψ = ∫ 




1
A B C D A B C D

S

 f z dz              (11) 

which could be deformed by the presence of an incurved section of the space 
having the energy-stress-mass tensor condition given by Einstein in conformally. 
Here ( ) ,f z  is a function of homogeneous degree +2, and ( ) ,f z  is a function 
of homogeneous degree-62. 

We can consider the linearized gravity framework (which can be complex) 
where we have the curvature, then considering the deforming contributions of 
the contour integrals given on (10) and (11), we have: 

,′ ′ ′ ′ ′ ′ ′ ′= Ψ ∈ ∈ +∈ ∈ Ψabcd ABCD A B C D AB CD A B C DK            (12) 

where ,′ ′ ′ ′Ψ ∈ ∈ABCD A B C D  is the anti-self-dual component and ,′ ′ ′ ′∈ ∈ ΨAB CD A B C D  
is the self-dual part. Here ,ΨABCD  and ,′ ′ ′ ′Ψ A B C D  both symmetric if ,abcdK  is 
real, due that ,ΨABCD  and ,′ ′ ′ ′Ψ A B C D  are both complex conjugate. 

The differential of the integrals (10) and (11) comes given as: 

,δ π π′ ′
′ ′=∈A B

A Bz  d                     (13) 

Likewise, ,f  and ,f  are representatives of cohomology. Here, we have the 
spectral curvature considering their spectra in the twistor space 

( ) ( )( ) .⊗T TS S *  But is necessary consider all cases that are presented in the 
complex Riemannian manifold ,M  to curvature study. Likewise in general 
relativity, to the flat space we can consider the duality between the spaces ,CM  
and ,3CP  having a null separation dual to meeting lines (see Figure 2). 

Also in deformation theory, the anti-self-dual complex space-time has corre-
spondence in duality with the general Ricci-flat space ,1CP  where circles of the 
deformed tube have images in a π - space. These deformed tubes could be geo-
metrical representations of 2-dimensional superstrings whose circles of their 
diameter are points of the infinite line or π - space. Then the anti-self-dual 
complex space-time and the Ricci-flat space are equivalent to the parallelism for 
πA - spinors (locally), that is to say, 

[ ], 0,π′ ′ ′∇ ∇ =AA BB C                       (14) 

taking place a curvature classification due the products of the summation indices 
[1]. Likewise, the curvature in ,ΨABCD  represents the non-existence of holo-
morphic planes3 in the twistor space to the tube (twistor tube) ,TC  then is 
required the twistor component due to the homogeneous degree-6, ,′ ′ ′ ′Ψ A B C D   

 

 

2Left-handed graviton with ,f  homogeneous with degree +2. And right-handed graviton 

with ,f  homogeneous with degree −6. 
3Def. A β -plane is a holomorphic plane in the twistor space .CT  
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Figure 2. Dualities between the twistor space elements and space-time elements [1]. 
 
which involves a torsion energy (second curvature energy) and the Ricci-flat 
space condition. 

The appearing necessity of torsion as special factor of curvature detection in 
the deforming of the microscopic space-times in ,M  is a condition of existence 
of curvature in these spaces. Likewise, in [2] is obtained a particular solution, 
which could establish curvature in spinor-twistor terms through of the second 
component of curvature given in (12). 

Here the problem is to see the cause of second curvature to ,abcdK  which are 
the elements mentioned before. 

Let ,M  a complex Riemannian manifold. We have the following natural 
conjecture. 

Conjecture 2.1. The curvature in spinor-twistor framework can be perceived 
with the appearing of the torsion and the anti-self-dual fields. 

Proof. We consider the complex Minkowski space .M  Then their Weil cur-
vature is anti-self-dual given place to the α -planes where could to exist distor-
tion or twists. But this exists to a space-time referred to the group ( ) ,CU 4  in 
gravity. Under these conditions the complex Minkowski space can present a tor-
sion as the candidate to produce distortions as second curvature in the space 

,M  (locally). But the spinor model of torsion can be writte as: 

,χ χ′ ′
′ ′ ′ ′ ′= ∈ + ∈

c CC CC
ab AA A B A B ABS                   (15) 

where spinors ,χ ′ ′A B  and ,χ ′ ′A B  are symmetric in ,AB  and ,′ ′A B  respec-
tively and linearly independents. Likewise, re-written the spinor equation to tor-
sion (15), in the twistor-spinor framework we have4: 

 

 

4 ( ), , ,∀ ∈ MX Y X  with connection ,∇  we have the torsion expression [3]: 

[ ] ( ), , ,=∇ −∇ −X YX Y  Y X 2S X Y  
If we consider the fields defined as ,Aλ π ′=a AX   and ,Aη π ′=a AY   then the twistor-spinor 

model of torsion is given. 
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( ) ,π π ξ π π π χ′ ′ ′
′ ′ ′ ′ ′ ′∇ = − 

A A C
AA B A B A B AC 2             (16) 

Then we must to do that the anti-self-dual complex space-time and the Ric-
ci-flat space are equivalent to the parallelism for πA -spinors (locally) that are 
had with the formalisms (15) and (16). This condition is an integrability condi-
tion necessary to the existence of solutions to equation types as (14). Here arise 
several tensors considering different spinor indices bracket products. Likewise, 
the curvature tensor written through spinors tools, using the spinor Ricci identi-
ties stays as: 

( )
( ) ,

BC

B C

φ φ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

= ∈ ∈ + ∈ ∈ + Φ ∈ ∈ + Φ ∈ ∈

+ ∆ ∈ ∈ ∈ + ∆ ∈ ∈ ∈ + Ω ∈ ∈ +∈ ∈ ∈ ∈

+ Ω ∈ ∈ +∈ ∈ ∈ ∈








abcd ABCD A B C D A B C D AB CD ABC D A B CD A B CD AB C D

AB A B CD C D A B AB CD C D AC BD AD A B C D

A C B D A D AB CD

R  
 (17) 

and the torsion through integrability condition (15): 

2 ,Cχ π φ π π π′ ′ ′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′  ′∇ ∇ − ∇ = − Ω ∈ + ∆ 

 



C C C E
C(A B ) A B HH A B E (A B ) A B2 C     (18) 

where is clear the appearing of torsion in the terms 2φ π π′ ′
′ ′ ′ ′ ′− Ω ∈

C E
A B E (A B ) C , 

and the integrability condition to α -surfaces also is appeared considering 
.λ λ π π ′

′= =A A
A A  0 ◆  
Then a total spinor field ,Ψ  that detect distortions due to curvature exis-

tence in the microscopic level can be written as: 

,π π π π π π π
ω ω ω ω ′ ′ ′ ′
∂ ∂ ∂ ∂

Ψ = ∈ ∈ + ∈ ∈
∂ ∂ ∂ ∂∫ ∫ 

1 1
AB BC A B C D A B B CA B C D

S S

d  d   (19) 

where are perceived these distortions with right-handed gravity (see Figure 3). 
Then we have the combining of two deformations with one component with 

two interaction planes. Likewise, in both components are considered the spinor 
fields ,ΨABCD  and ,Ψ ABCD  where the component ,Ψ ABCD  is really the 
principal contribution of the distortions: 

ABCDΨ=Ψ  ABCDΨ+ ABCDΨ+ ~
    (20) 

But in the component ,ΨABCD  also happens certain distortion understood as 
twistor waves with image in spinors, where to the twistor function ( ) ,f z  the  

degree +2 has the infinitesimal shunt to wave-spinor ˆ ,ω ω η
ω
∂

= +∈
∂

A A AB
B

f  

and ˆ ,π π=A A  with vector field ,η
ω ω
∂ ∂
∂ ∂

AB
B A

f  agreeing with the integral: 

,π π
ω ω
∂ ∂

Ψ =
∂ ∂∫ 


ABCD A D d  

Then the field ,Ψ ABCD  is incorporated as was signed in (20) using this field 
may be, with the differential form in major dimension. But necessarily has that 
be incorporated in a 3-dimensional space which is inside an energy state space 
which will give a censorship condition to the detection and measure of first and  
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(a)                                      (b) 

Figure 3. (a) Distortions with right-handed gravity by spinor .α βΨ + ΨABCD ABCD ; (b) 
Distorted tube more right-handed gravity given by (19). 

 
second curvature considering the twistor-spinor waves used in the field frame-
work. 

Likewise, with this spirit of ideas, will be necessary incorporate a 3-forms of 
Sparling type to use the adequate Hamiltonian vector density where their H
-space is equal to ASD space-time whose the non-linear graviton twistor space is 
the space ,TP of twistor lines .Z  

3. The Kinematic Tensor and the Dominating Energy  
Condition to Torsion Indicium 

Remember that the wanted positivity condition can be expressed as (using Her-
mitian matrix): 

,β α α
αβ α ≥A I Z Z 0                        (21) 

,α∀Z  a constant field, that is to say, the Hermitian matrix ,β
αβ αA I  could be 

positive semi-definite. 
Likewise, considering that the exhibition of curvature energy can be written 

through the energy densities obtained for twistor fields and their dual, the spinor 
frame, we can write the dominating energy condition as the integral: 

1 ,
2

β α α
αβ α π π θ

π

π π θ π π
π

′
′

′ ′
′

= ∧

= ∧ ∧ −

∫

∫

A A
AA

S

AA A A b
A A ab

iA I Z Z    d
8 G

i d d G
8 G H

X
     (22) 

,∀ bX  a Hamiltonian vector density: 

,θ θ θ= ∈ ∧ ∧b b c d c
abc

1 
6

X                    (23) 

which is the 3-form mentioned in Table 1. 
In the conformally flat space-time (Ricci-flat space) we have solutions to the 

equation ,ω π′ ′∇ = − ∈A B AB
A Ai  and any 2-surface twistor arises by restriction of a 

“4-space-time”such as in the FRW-cohomology5. Then the kinematic twistor is 
again written in terms of the flux integrals. 

Considering the scalar “observable” due the twistor kinematic tensor ,αβA  
given by, ,NM  we have: 

 

 

5Friedman-Robertson-Walker cohomology. 
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Table 1. Differential forms to different objects in twistor-spinor theory. 

# 
Differential Forms 

Physical Object 
N-dimension

al form 
Locally Expression in M.  

1 Deformed Line 
1-form: 

( )δ= z  
α β

αβδ π π′ ′
′ ′= =∈A B

A Bz I Z dZ  

2 
2-Dimensional Waving 

Space  
(for example Figure 4(b))) 

2-form: 
1
2

τ = dL  
1
2

α β
αβτ π π′ ′

′ ′= ∧ =∈ ∧A B
A BI dZ dZ d d  

 H -Spaae 3-form: θ  2 3 2 3

1 3 1 2

1
6

d d d d
d d d d

α β γ δ
αβγδθ = ∈ ∧ ∧

= ∧ ∧ − ∧ ∧

+ ∧ ∧ − ∧ ∧

0 1 1 0

2 0 3 0

Z dZ dZ dZ

Z dZ Z Z Z dZ Z Z
Z dZ Z Z Z dZ Z Z

 

4 Spin Bundle 
4-form: 

1
4

φ θ= d  

1
24

α β γ δ
αβγδφ = ∈ ∧ ∧ ∧

= ∧ ∧ ∧0 1 2 3

dZ dZ dZ dZ

dZ dZ dZ dZ
 

5 
Field Distorsion 

Components  

Euler form: 
: ,θ φΥ =

( )θ φ∧ = Υda a  
α

α

∂
Υ =

∂
Z

Z
 

 

 
       (a)                                     (b) 

Figure 4. (a) Positive definite condition applied in the spinor ,ω ωA B  and ,π π ′A A  in 
the 2-dimensional model of the space-time kinematic twistor. In the model (b); is in-
cluded the perturbations in the H -space, that is to say, is the H -space model of the 
twistor kinematic space. 
 

,αβ
αβ=2

N
1M  A A
2

                      (24) 

which can be written on a 3-surface as: 

,αβ αα ββ
αβ

′ ′= Σ Σ2
N

1M  A A
2

                   (25) 

Likewise, we find that the 3-surface twistor equation has a complex 4-dimen- 
sional family of solutions (a 3-surface twistor space ( )ΣT ) if and only if ,Σ
with their first and second fundamental forms are embedded in a conformally- 
flat space-time (see Figure 5). 

The nature of the ( ) ,ΣT  from a point of view of QFT, are fermionic 
sources (currents) whose fermionic fields are Grassman numbers satisfying 
anti-commutation relations where bosonic fields and currents commute. 
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We consider the following main result, which is the culmination of this re-
search. 

Theorem 3.1 (F. Bulnes, I. Verkelov, Y. Stropovsvky, I. Rabinovich). Spi-
nor wave SAA’, in the non-commutative ring algebra (Clifford algebra type) has as 
Spec in the kinematic-twistor space-time as rotating embedding surfaces (wav-
ing) in the H -space given by .ΠAA  

Proof. We consider the theorem 2.1, of the section 2, and considering the 
proposition 1. 2, to the contorted 2-surfaces embedded with values in the H
-space as ( ) ( )( ) ,⊗T TS S *  we demonstrate that the deformed category of the 
moduli stack to the elements that acted in the space-time are the of non-com- 
mutative algebra whose spectrum6 (see the scheme of derived categories) is in 
the corresponding twistor kinematic space-time. This proves the asseveration of 
the theorem 3.1. The elements in the H -space are bosonic fields commutating 
with currents. The waving is of type as Figure 6. 

The moduli stack comes given by the gravitational waves given by the duali-
ties between spinors and kinematic tensors. 

These are gravitational waves in the space-time, since come of the torsion 
which is a second curvature, and by the arguments of fermion interactions and 
fermionic sources (and particle helicities), these produce torsion from micro-
scopic level until the conforming of the macroscopic behaviour of the space-time 
near of massive source. 

Then the evolution of the space from the Big Bang until the Universe that we 
know, have two periods of particles interacting, the first called leptogenesis 
where the Universe conforms the base of the fermions in different types of neu-
trinos. Then these new fermionic interacting and due to the particle helicities 
that go arising of the fermionic sources, generate the torsion modelled geomet- 
 

 
Figure 5. The appearing of the twistor image due to the twistor kinematic tensor acting 
on space-time from the twistor space ( )ΣT .  

 

 

6Theorem (I. Verkelov, F. Bulnes) [4] [5]. Considering the functors Φ , Ψ , with the before proper-

ties ( )
F

augG
Moduli Alg ,n

n

Φ

Ψ

R

R

  the corresponding homotopy equivalence, and their canonical homotopy, 

likewise, the relation ( ) ( )( )
1

aug smA lg Moduli Fun Alg , ,n n
n

−Φ

≅ ⊆ S  we have the following scheme  

( )( ) ( ) ( )Moduli CAlg SpHom ,Spec Hom , .n X B B≅ S  
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Figure 6. Bose-Einstein distribution to the gravitational waving evolution. The fermionic 
sources happened before of the flatness of the space-time far of the massive object M 
(yellow source). The torsion component creates the waving on space-time. 
 
rically by the space ( ) ,ΣT  then this produce a baryon-genesis whose action 
on the space-time produce the initial condiment of matter-energy, which finally 
gives the gravitational waves and after the bosonic fields and currents (see the 
Figure 7). 

4. Spectrum of Kinematic Tensor to Curvature and Design 
Curvature Censorships to Quantum Gravity Sensors 

Through consider the field study framework realized in this chapter we could 
determine and design a censorship condition with possibilities to their applica-
tion in sensor technology [7]. 

In addition, we can consider the models of the space-time influenced for the 
fields on each particle of this, that is to say, consider the light cone of each parti-
cle intersects with the infinity nullity of the gravitational field that creates the 
deformation of the space-time [7]. 

In these intersections exist the detectable and measurable part that can be 
measured through microscopic electromagnetic fields and for the other side, that 
has the gravitational nature that provokes the curvature, generating enough 
energy to be bounded by the cosmic censorship of Penrose [8]. 

But the proper movements of the space-time from the 3-invariance in 4-di- 
mensional complex space-time, and the expansion of the space-time studied in 
field theory frame considering gravitational fields, we can have the kinematic 
models given by the spaces that are asymptotically de Sitter and anti-de Sitter [9] 
[10]. These could give a fine censorship condition in the kinematic twistor mod-
els explained before. 

Through a gauge field (electromagnetic type field as photons) acting on the 
background radiation of the Minkowski space ,M  where the energy of the 
matter will be related with this gauge field through equation 
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Figure 7. The torsion is represented in the clear purple waving [6] in the space-time. 
 

,α α αβ=J k T                           (26) 

(where αk ) can represent the density of background radiation which establish-
es for the curved part of the space (that in this case has spherical symmetry) to-
gether with the energy and matter tensor that (see the Figure 8) 

2 2

1 2
4

α β α β
αβ σ σ πχ

π
≥ ≥∫ ∫

S S

T k d J d
G

               (27) 

Then of the dominating energy condition normed by the twistor kinematic 
tensor given by the 3-dimensional ball affected (electromagnetic fields in 

( ) ,SU 2  which is isomorphic to 3S ) by gravitation in the 4-dimensional space, 
we can to have the image of the twistor space of sphere in ( ) ( )( ) ,⊗T TS S *  
whose condition is had as: 

16 ,π ≥2M A                          (28) 

which is the Penrose censorship7 [11] for a singularity detected of spherical type 
[12] [13] [14] [15]. But from this idea can be designed and developed a sensor 
that use the torsion energy as second curvature energy. Because the fundamental 
conclusion of the end of the Section 3, is that the torsion energy obtained by 
movement of the 3-dimensional ball inside the -H space, is curvature energy 
and thus gravitational energy. 

5. Conclusion 

Curvature energy as image of the twistor kinematic-energy tensor applied to 
3-dimensional sphere as surface to the cosmic censorship and the obtaining of 
curvature through gravitational waves can be very useful in quantum gravity 
theory to creation of advanced sensor devices that can measure the deformation  

 

 

7 ( )
2

2

2 21 log 4 .
S

π
 

Ω −∇ Ω ≥ Ω 
 
∫ ∫  
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Figure 8. Degenerated neutrinos energy, which will be persistent to space-time back-
ground, being a strong indicium of the torsion (rest of the leptogenesis/baryongenesis 
process. This low energy signed in the circle is the represented in the right extreme of the 
inequality (27). Then gravitational waves appear. 
 
on surfaces affected to micro-local level by the energy-matter-momentum tensor 
variations. One of these variations is the torsion energy, which is the curvature 
energy. Likewise, theoretically the integral representation given to the electrical 
charge depending of the momenta, establishes through analysis realized in dual-
ity that the gravitational energy condition required is to detect curvature in 
terms of energy. This is obtained with a censorship condition on cylindrical gra-
vitational waves. These gravitational waves are produced from a 3-dimensional 
sphere located inside the background model of the space-time, whose values are 
in the space ( ) ( )( ) .⊗T TS S *  This obeys to a topological space as complex 
Riemannian manifold with local structure, which is isomorphic to a Hilbert 
space to this dominated energy in the space. Then the energy condition in this 
case is established for the existence of the sources, which is given by gravitational 
waves (source detection). These gravitational waves are solutions of a twistor 
equation whose spinor equivalent is the solution to the dominated energy by the 
presence of matter of a massive object whose existence in the space-time is given 
by this energy condition [13] [14]. This study is bounded to the curvature energy 
extended to the field torsion, using the spinor technology to create waves from 
field interactions. Studies realized on dilatons used as gauge particles to measure 
gravitational distortions has been proposed in several works [6] [8]. The idea of 
use fields to measure other fields is extended to other field formalisms consider-
ing tropical geometries in a complex Riemannian model of the space-time, that 
they can be carried to the technological design of sensor devices to detect quan-
tum gravity [16]. The following step will be the application of the -H states [7] 
[16] to produce that technology. 
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Abstract 
The metamaterial constructed by Helmholtz resonators (HR) has low-frequency 
acoustic forbidden bands and possesses negative mass density and effective 
bulk modulus at particular frequencies. The resonant modes in one-dimensional 
HR structure with point defect were studied using finite element method 
(FEM). The results show that the acoustic energy is localized between the re-
sonant HR and the opening in the local-resonant-type gap. There is a high 
pressure area around the defect resonator at the frequency of defect mode. In 
the Bragg type gap, the energy mainly distributes in the waveguide with har-
monic attenuation due to the multi-scattering. Phase opposition demonstrates 
the existence of negative dynamic mass density. Local negative parameter is 
observed in the pass band due to the defect mode. Based on further investiga-
tion of the acoustic intensity and phase distributions in the resonators cor-
responding to two different forbidden bands, only one local resonant mode is 
verified, which is different from the three-component local resonant phonon-
ics. This work will be useful for understanding the mechanisms of acoustic 
forbidden bands and negative parameters in the HR metamaterial, and of help 
for designing new functional acoustic devices. 
 

Keywords 
Helmholtz Resonator Metamaterial, Resonant Mode, Point Defect, Local 
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1. Introduction 

Helmholtz resonator (HR) is normally constructed by a large cavity with a short 
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neck [1]. Due to its resonance, the resonator possesses capability of low-frequency 
sound absorption and elimination [2]. Recently, with the increasing research on 
phononic crystals and acoustic metamaterials, the structure based on HRs has 
been reconsidered for its property of sound forbidden [3]-[8]. Furthermore, it is 
found that the structure possesses negative effective bulk modulus [4] and nega-
tive dynamic mass density [5] in its band gap, and therefore it is considered as a 
possible material to realize new functional devices of transformation acoustics 
[9]. 

Based on the different mechanisms, there are two kinds of acoustic forbidden 
bands in the HR metamaterial. One is called Bragg type gap (BG), which is ap-
peared due to the Bragg scattering in the material with periodically arrayed cells 
[10]. The BG can only forbid the sound waves with wavelength comparable or 
shorter than the lattice constant. It is unpractical to control low frequency sound 
using this kind of metamaterial for its huge sizes. On the other hand, the second 
type acoustic forbidden band is brought by local resonance of HR [11], which 
can be called local-resonant-type gap (LRG). The LRG exists around the eigen- 
frequency of the resonator. As the sound wavelength corresponding to the eigen- 
frequency is usually some times of magnitude larger than the geometric para-
meters of the resonator, low frequency sound waves can be well controlled. 

The band structure is much richer when defect exists [7] comparing that of 
perfect periodical case. Localized mode can be observed due to the coupling of 
the defect units and perfect units [12] [13] as well as several new gaps of BG 
and/or LRG. A localized mode is that, at a particular frequency, the linear free 
oscillations are trapped around the defect resonators and decay exponentially 
away from them [7]. In this case, the acoustic energy can be captured by the 
point defect or limited directionally transmitting along the line defect and area 
defect. With this character, wave-control devices can be designed [14] [15]. Re-
cently, Fey et al. [8] indicated that a wide bandgap material could be get with a 
subwavelength collection of detuned HRs which are considered as a series of de-
fects. However, the problem turns complicated with the increase of the number 
of defects. 

Comparing with two- and three-dimensional metamaterials, one-dimensional 
(1D) systems can be calculated with higher accuracy [1] [4]. It is also understood 
that the results of 1D system are helpful for understanding the property of more 
complex cases. In previous researches, theoretical studies on the 1D HR struc-
tures were based on the theory of Bloch wave and scattering [1] [2]. However, 
due to its strict periodicity assumption, this method is infeasible to deal with 
more complicated composites with quasiperiodicity or disperiodicity. Recently, 
some reduced methods were developed to analyze the acoustic transmission 
property of the HR structure. Cheng et al. [5] analyzed the acoustic transmission 
properties of 1D HR metamterial by means of acoustic transmission line method 
(ATLM). Based on the interface response theory (IRT), Wang et al. [7] studied 
1D phononic crystals containing HRs systematically, especially on the acoustic 
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transmission properties of structure with point defect. 
So far, these studies gave more attention to the transmission property of the 

HR metamaterial with simplified parameters than the details inside the struc-
ture. We believe that, with full view of distribution of the oscillation modes in 
the structure, a clear understanding on the mechanisms about the acoustic band 
gaps and negative parameters can be obtained, which is useful for designing new 
acoustic energy concentrator and creating high pressure environment for acous-
tic experiments. 

In practice, since the complex geometry is simplified in former theoretical 
methods which are unable to investigate the detailed field distribution in the 
structure, an accurate approach must be introduced to analyze the resonant 
modes property of the HR metamaterial. The Finite Element Method (FEM) is 
an appropriate approach to minutely study the characteristics of the acoustic 
field for complex structures. On the basis of FEM, the distributions of acoustic 
intensity and phase for different oscillation modes in the 1D metamaterial with 
HRs were studied in this paper. Local resonant modes were also investigated for 
different forbidden gaps. 

2. Model and Verification of the Method 

Figure 1 shows the schematic diagram of a Helmholtz resonator which is con-
nected with a section of waveguide forming a unit cell of the metamaterial. As a 
numerical example, here we consider a model with 11 HR unit cells, and the 6th 
one is abnormal which can be considered as a defect. The overall geometric pa-
rameters are L = 0.09 m, and d1 = 0.025 m. For the cells, the geometrical para-
meters of the ten perfect units are a2 = 0.02 m, d2 = 0.02 m, V = a3 × l3 × d3 = 0.03 
× 0.04 × 0.05 m3, while the only difference for the defect unit is that d2 = 0.04 m. 
The background media is water (ρ0 = 998 kg/m3, c0 = 1483 m/s). Here, we ana-
lyzed the acoustic band gap structure of the metamaterial in the region of 1 - 10 
kHz. 
 

 
Figure 1. Schematic diagram of a Helmholtz resonator and a 
section of waveguide. 
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We studied the 3-dimensional model using COMSOL Multiphysics software 
(Version 4.2) which is based on the Finite Element Method (FEM). We set up 
the boundary conditions as shown in Figure 2, in which a perfect matched layer 
(PML) was used at the end of the waveguide to simulate the absorbing boundary 
condition. All the other boundaries were set to be hard walls, except that a radia-
tion boundary condition with a harmonic wave was used as the incident wave. 
The host medium in the waveguide and the resonators is water. 

To the computational mesh, in our simulation, at least 8 elements per wave-
length were used, which guaranteed the accuracy of the method, and also satis-
fied the general six-element-per-wavelength rule in acoustic mesh [16]. All ele-
ments are hexahedral. 

To validate the feasibility of the software using FEM, we first made a compar-
ison between the results of FEM and ATLM [5] [17] for the acoustic transmis-
sion property of the metamaterial. 

In ATLM, based on the transformation relationship between acoustic imped-
ances of the inlet and outlet, the transmission coefficient can be obtained by ap-
plying this formula recursively. 

The impedance transfer formula [16] of ATLM can be written as 

( )
( )

0
1 0

0

tan
tan

r

r

Z jZ kL
Z Z

Z jZ kL
+

= ×
+

                    (1) 

where, Zl (Zr) is the effective impedance of the inlet (outlet) of the unit cell. Z0 = 
ρ0c0/Sg is the distributed impedance of the duct. Sg is the cross-section area of the 
waveguide. k is the wave vector of the host medium. L is the distance between 
two adjacent HRs. 

With the assumption of long-wavelength, the transfer impedance of the wa-
veguide parallels to the HR impedance Zh [16]. The parallel impedance is 

||c l hZ Z Z=                              (2) 

which can be considered as the terminal-end impedance of its left neighbor. 
By repeating this process over the N units, the effective acoustic impedance 

(Zeffect) of 1D metamaterial with N unit cells can be obtained. Then, the sound 
pressure reflection coefficient can be calculated as 

effect 0

effect 0
p

Z Zr
Z Z

−
=

+
                           (3) 

The sound intensity reflection coefficient and intensity transmission coeffi-
cient are 

2
, 1I p Ir r T r= = −                            (4) 

 

 
Figure 2. Finite element model of the metamterial. 
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In Equation (4), the band gap exists only if T = 0, which means 1pr = , and 
therefore Zeffect = 0 or ∞. It indicates that Zl or/and Zh vanishes in Equation (2). Zl 
= 0 corresponds to that the real and imaginary parts of Equation (1) equal zero 
simultaneously, which is mathematically impossible. In fact, based on Equation 
(1), we get that, when KL = nπ, viz. f = nc/2L, the value of Zl reaches its mini-
mum (equals to Zr). This frequency corresponds to the central frequency of BG. 
On the other hand, when Zh = 0, the incident wave frequency equals to the reso-
nant frequency of the HR, which means the appearance of LRG in this case. 

Figure 3 shows the acoustic transmission coefficient curves for both perfect 
metamaterial and structure with point defect basing on FEM and ATLM, respec-
tively. Despite small differences, the results obtained based on FEM can also 
show all the properties of the HR metamaterial with point defect, such as trans-
mission bands, forbidden bands and defect mode. Figure 3 demonstrates the 
feasibility of FEM, which can be a further approach to analyze the resonant  
 

 
(a) 

 
(b) 

Figure 3. Comparison of acoustic transmission coefficient spectra based on FEM and 
ATLM for structures with (a) only perfect cells and (b) a point defect, respectively. 
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modes of the structure. It is also observed that the depth and width of the band 
calculated by FEM are much narrower and shallower than that obtained by 
ATLM. These characters are attributed to the inherent difference of FEM and 
ATLM. The main reason might be that the complex geometry of the structure is 
simplified by lumped parameters in ATLM, which ignores the wall effect in 
pipes. While in the well meshed FEM, details caused by the structure could be 
captured. 

3. Simulation Based on FEM 

Now we take a detail observation on the acoustic intensity distributions of the 
structure with point defect for several specified frequencies using the results with 
full-wave simulation based on FEM. The choice of the frequencies was based on 
FEM results in Figure 3(b). The acoustic intensity distributions are displayed in 
Figure 4. 

In Figure 4, point (a) locates at 1.5 kHz in the low-frequency pass band, 
where the acoustic intensity distributes periodically in the waveguide. Since the 
frequency does not reach the resonant frequency of HRs, the resonators are in 
the state of “pre-resonance”, and the acoustic energy is being localized by the 
resonator. In Figure 4(b) (2.38 kHz), energy is localized between the defect HR 
and the incident opening with small amount of acoustic energy penetrating. The 
acoustic intensity in the waveguide is obviously weaker than that in the resona-
tors. As we know, point (b) corresponds to the resonant frequency of the defect 
HR, which indicates that, in the LRG, the resonant HR can localize almost all the 
energy passing across it. Point (c) (2.52 kHz) is another dip between the two 
LRGs. Comparing with Figure 4(b), the energy in the defect HR has been al-
ready released in Figure 4(c). This is because that with the increase of frequen-
cy, the resonant mode of the defect HR vanishes. In this case, the sound is no 
 

 
Figure 4. Acoustic pressure intensity distribution for different oscillation modes, which 
are corresponding to the special frequencies selected from (a) to (h), respectively. 
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longer localized in the resonator, and the resonators are in the state of “af-
ter-resonance”. On the other hand, point (c) is also close to the resonant fre-
quency of perfect HR. The wave oscillation in the perfect resonators becomes 
strong, and therefore the energy is still localized in few resonators on the inci-
dent side but released to the waveguide. 

Point (d) (3.2 kHz) locates at the resonant frequency of perfect HR. In Figure 
4(d), almost all the acoustic energy is localized in the first HR, which further 
demonstrates that pressure is hold up by the first resonant HR in the LRG. In 
each case, a high pressure environment exists in the resonant HR, which can be 
helpful for acoustic energy concentrating and high-pressure experiments. How-
ever, there is a slight difference between the two resonant modes showed in Fig-
ure 4(b) and Figure 4(d). Due to more cells resonating, the depth and width of 
the second LRG are larger than the first one. 

Point (e) (4.08 kHz) corresponds to a defect mode, which is a narrow trans-
mission band is the forbidden band. It is obvious that, in Figure 4(e), the acous-
tic energy is localized around the defect HR and its neighbors. The intensity 
reaches the largest value at the defect resonator, and then attenuates sharply to 
both sides. This is a typical property of the defect mode [12]. Since the defect 
mode is created by the coupling of the defect HR and perfect HRs, the defect 
mode frequency is not the same with both resonant frequencies. The defect 
mode is useful for realizing new filter, energy harvester and acoustic cloaking. 

Point (f) (5.1 kHz) is in the pass band outside the LRG. As shown in Figure 
4(f), with the increment of the pressure in the waveguide, the pressure in the 
HRs decreases. Now, the energy is not localized in HR, but released to the wa-
veguide. In this case, the HRs are like obstacles to short-wavelength sound. With 
this conclusion, it is imaginable that the harmonicity would be more obvious 
and the intensity would be higher in the waveguide for Figure 4(g) (7.5 kHz) 
and (h) (8.8 kHz). Point (h) just locates in the BG. In Figure 4(h), due to multi- 
scattering, the intensity in the waveguide attenuates gradually, which tends to 
zero at the terminal end. On this condition, the BG appears. 

To summarize, as shown in Figure 4, there are plenty resonant modes in the 
metamterial containing HRs with point defect. When frequency is lower than 
the resonant frequency, the acoustic energy distributes in the waveguide and re-
sonators symmetrically. As frequency turns to the resonant frequency, local re-
sonant mode can localize the energy between the first resonant HR and the inci-
dent port. In the defect mode, a high pressure zone exists around the defect re-
sonator. Finally, the energy in the resonant HR is released to the waveguide and 
transmits in the waveguide only when frequency is higher than the resonant 
frequency. 

Figure 5 shows the corresponding phase distributions of Figure 4. In Figure 
5(a), the phase in the waveguide is the same as that in the shunted HR, which 
indicates that the resonator oscillates in-phase with the wave in the waveguide. 
In this case, the dynamic mass density must be positive [5] [18]. As frequency  
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Figure 5. Phase distribution for the metamaterial containing HRs with point defect. Fig-
ures (a) to (h) correspond to the cases showed in Figure 4. 
 
reaches the resonant frequency of the defect resonator (Figure 5(b)), though the 
in-phase property remains, the wave front around the defect HR is not parallel 
to the others due to strong oscillation of the resonant resonator. When frequen-
cy pass across the first resonant frequency (Figure 5(c)), a special effect must be 
noted that the phases between the defect HR and the waveguide are opposite, 
which accounts for that the local dynamic mass density becomes negative [5]. In 
this case, negative and positive parameters exist simultaneously in this structure. 

If frequency is higher than the resonant frequency of the perfect HR (Figure 
5(d)), the phase difference inside and outside the resonator is π. Since the HRs 
oscillate out of phase with the wave in the waveguide, the dynamic mass density 
turns negative in the whole structure. The negative parameter still exists in Fig-
ure 5(e), which indicates that the negative dynamic mass density not only exists 
in the forbidden band, but also can be found in the pass band created by defect 
mode. In Figures 5(f)-(h), the phase distribution in the waveguide corresponds 
with the property of harmonic wave. 

Local resonant modes, such as energy and phase distributions, in the built-in 
units are typical characteristics of the local resonant phononic crystals [11]. In 
HR metamaterials, one unit contains only a neck and a cavity, the local resonant 
modes distribution in the neck and cavity indicates the basic characteristic of the 
structure. Therefore, we should pay attention to the intensity and phase differ-
ences between the neck and the cavity of the HR, which will be discussed below. 

As shown in Figure 6, acoustic intensity ((a) and (b)) and phase ((c) and (d)) 
distributions for perfect HR in different gaps are given, in which Figure 6(a) 
and Figure 6(c) are at 3.2 kHz in the LRG, and (b) and (d) are at 8.8 kHz in the 
BG. 
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Figure 6. Acoustic intensity ((a) and (b)) and phase ((c) and (d)) distributions for 
Helmhotlz resonator in different forbidden bands. The frequency of (a) and (c) is 3.2 kHz 
corresponding to the LRG; and (b) and (d) is 8.8 kHz corresponding to the BG. 
 

In Figure 6(a), the intensity at the opening of the neck is almost zero, while 
that in the cavity reaches the maximum. This indicates that local resonant mode 
appears in the cavity, where the energy is localized. It is opposite in Figure 6(b), 
in which the intensity in the neck is bigger than that in the cavity. However, in 
view of Figure 4(h), we can see that the intensity in the neck is continuous with 
that in its connecting waveguide. Besides, in Figure 5(h), the phase in the short 
neck is totally the same with that in the waveguide. These all indicates that there 
is no local resonant mode in Figure 6(b). Only one kind of local resonant mode 
exists in the metamaterial based on Helmholtz resonators, which is different 
from the three-component local resonant phononics, in which two local reso-
nant modes are discovered [19]. 

As shown in Figure 6(c), the neck and cavity oscillate in phase. Considering 
with Figure 5(d), it should be insisted that the negative parameter is created by 
both the neck and the cavity oscillating out of phase with the wave in the wave-
guide. If the HR oscillates strongly enough, the dynamic mass in the metama-
terial can be negative. However, it is opposite in Figure 6(d), where the neck os-
cillates out of phase with the cavity, but in phase with the wave in the waveguide 
(Figure 5(h)). In this case, only the cavity oscillates out of phase with the wave 
in the neck and waveguide. Therefore, the negative dynamic mass density may 
exist as a local parameter. Due to the energy limitation, it may not be large 
enough to affect the parameter of the whole structure. 

4. Conclusions 

To study the resonant modes in the metamaterial constructed by Helmholtz re-
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sonators with point defect is useful for understanding the mechanisms of acous-
tic band gaps and negative parameters. The distributions of acoustic intensity 
and phase for 1D HR structure with point defect were analyzed basing on 3D 
FEM. The results show that there are different oscillation modes for different 
frequencies. When frequency tends to the resonant frequency of any HR, the 
acoustic energy is gradually localized in the resonant resonator, which results in 
a local-resonant-type gap. At the point of defect mode, the energy locates around 
the defect cell. When the wavelength is twice of the lattice, the first Bragg type 
gap appears, when the acoustic energy almost entirely distributes in the wave-
guide with harmonic attenuation. The phase distribution demonstrates that 
when frequency is higher than the resonant frequency, the resonant HR can os-
cillate out of phase with the wave in the waveguide, which is the mechanism of 
the negative dynamic mass density. Furthermore, the negative parameter not 
only exists in the forbidden band, but also can be observed in the pass band 
created by defect mode. Different from the typical three-component local reso-
nant phononics, there is only one local resonant mode in one-dimensional HR 
metamaterial, which exists in the local resonant forbidden band. This work will 
be helpful for designing new functional acoustic devices. 

In this paper, only two-dimensional linear problems are investigated. More 
complicated models are not included here. For example, we also observe that 
there are non-parallel interfaces of the phase distribution in Figure 5, which in-
dicates that there maybe nonlinear phenomena exist. Furthermore, we will pay 
more attention on these problems in our next program. 

Funds 

The work is supported by National Natural Science Foundation of China (Grant 
Nos. 11504425 and 41374005). 

References 
[1] Sugimoto, N. and Horioka, T. (1995) Journal of the Acoustical Society of America, 

97, 1446. https://doi.org/10.1121/1.412085 

[2] Masuda, M. and Sugimoto, N. (2005) Journal of the Acoustical Society of America, 
118, 113. https://doi.org/10.1121/1.1929237 

[3] Hu, X.H. and Chan, C.T. (2005) Physical Review E, 71, 055601(R).  
https://doi.org/10.1103/PhysRevE.71.055601 

[4] Fang, N., Xi, D.J., Xu, J.Y., Ambat, M., Srituravanich, W., Sun, C. and Zhang, X. 
(2006) Nature Materials, 5, 452. https://doi.org/10.1038/nmat1644 

[5] Cheng, Y., Xu, J.Y. and Liu, X.J. (2008) Physical Review B, 77, 045134.  
https://doi.org/10.1103/PhysRevB.77.045134 

[6] Hu, X.H., Ho, K.M., Chan, C.T. and Zi, J. (2008) Physical Review B, 77, 172301.  
https://doi.org/10.1103/PhysRevB.77.172301 

[7] Wang, Z.G., Lee, S.H., Kim, C.K., Park, C.M., Nahm, K. and Nikitov, S.A. (2008) 
Journal of Applied Physics, 103, 064907. https://doi.org/10.1063/1.2894914 

[8] Fey, J. and Robertson, W.M. (2011) Journal of Applied Physics, 109, 114903.  

https://doi.org/10.4236/jmp.2017.810102
https://doi.org/10.1121/1.412085
https://doi.org/10.1121/1.1929237
https://doi.org/10.1103/PhysRevE.71.055601
https://doi.org/10.1038/nmat1644
https://doi.org/10.1103/PhysRevB.77.045134
https://doi.org/10.1103/PhysRevB.77.172301
https://doi.org/10.1063/1.2894914


D. B. Gao et al. 
 

 

DOI: 10.4236/jmp.2017.810102 1747 Journal of Modern Physics 
 

https://doi.org/10.1063/1.3595677 

[9] Chen, H.Y. and Chan, C.T. (2010) Journal of Physics D: Applied Physics, 43, 
113001. https://doi.org/10.1088/0022-3727/43/11/113001 

[10] Zhang, X., Liu, Z.Y., Mei, J. and Liu, Y.Y. (2003) Journal of Physics: Condensed 
Matter, 15, 8207. https://doi.org/10.1088/0953-8984/15/49/001 

[11] Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T. and Sheng, P. 
(2000) Science, 289, 1734. https://doi.org/10.1126/science.289.5485.1734 

[12] Sigalas, M.M. (1997) Journal of the Acoustical Society of America, 101, 1256.  
https://doi.org/10.1121/1.418156 

[13] Munday, J.N., Bennett, C.B. and Robertson, W.M. (2002) Journal of the Acoustical 
Society of America, 112, 1353. https://doi.org/10.1121/1.1497625 

[14] Oudich, M. and Assouar, M.B. (2012) Journal of Applied Physics, 111, Article ID: 
014504. https://doi.org/10.1063/1.3673874 

[15] Qiu, C.Y., Liu, Z.Y., Shi, J. and Chan, C.T. (2005) Applied Physics Letters, 86, Ar-
ticle ID: 224105. https://doi.org/10.1063/1.1942642 

[16] Kinsler, L.E., Frey, A.R., Coppens, A.B. and Sanders, J.V. (1982) Fundamentals of 
Acoustics. Wiley, New York. 

[17] Zienkiewicz, O.Z. and Taylor, R.L. (2006) The Finite Element Method. 6th Edition, 
Elsevier. 

[18] Mei, J., Liu, Z.Y., Wen, W.J. and Sheng, P. (2006) Physical Review Letters, 96, Ar-
ticle ID: 024301. https://doi.org/10.1103/PhysRevLett.96.024301 

[19] Wang, G., Wen, X.S., Wen, J.H., Shao, L.H. and Liu, Y.Z. (2004) Physical Review 
Letters, 93, Article ID: 154302. https://doi.org/10.1103/PhysRevLett.93.154302 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jmp@scirp.org 

https://doi.org/10.4236/jmp.2017.810102
https://doi.org/10.1063/1.3595677
https://doi.org/10.1088/0022-3727/43/11/113001
https://doi.org/10.1088/0953-8984/15/49/001
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1121/1.418156
https://doi.org/10.1121/1.1497625
https://doi.org/10.1063/1.3673874
https://doi.org/10.1063/1.1942642
https://doi.org/10.1103/PhysRevLett.96.024301
https://doi.org/10.1103/PhysRevLett.93.154302
http://papersubmission.scirp.org/
mailto:jmp@scirp.org


9 772153 119007 609 772153 119007 01




	Front Cover
	Inside Front Cover-Editorial Board
	Table of Contents
	Journal Information
	1685-Measuring Sound Pressure Levels during Thermoacoustic Instabilities in Large Engines: Case Study
	1700-Sobolev Spaces, Schwartz Spaces, and a Definition of the Electromagnetic and Gravitational Coupling
	1723-Curvature Energy and Their Spectrum in the Spinor-Twistor Framework: Torsion as Indicium of Gravitational Waves
	1737-Resonant Modes of One-Dimensional Metamaterial Containing Helmholtz Resonators with Point Defect
	Inside Back Cover-Call for Papers
	Back Cover

