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Abstract 
We present in this paper a new technique based on Gelfand’s triplet [1] and 
include differential theory to make a theoretical analysis of an optimal control 
problem with constraints governed by coupled partial differential equations. 
This technique allowed us to give some theoretical results of existence and 
uniqueness of the solution of constraints and characterize the optimal control. 
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1. Introduction 

The objective of this paper is to make a theoretical analysis of an optimal control 
problem with constraints governed by coupled partial differential equations. 

The interest of this work is two-fold. Indeed firstly the resolution of optimal 
control problem with partial differential equations constraints is a challenge for 
the current research in the field both theoretically and numerically. Secondly, 
the mathematical model studied is of utmost importance in practice since the 
physical phenomenon is modeled through this paper concerning the pollution of 
surface water. The studied problem is very complex since the objective function 
is not explicitly defined in term of control directly. Hence there is a need to solve 
equations that govern constraints that are also complex as we couple the model 
which describes the pollutants dissolution with Navier-Stokes equations. 

To overcome these difficulties, we built a new technique based on the Gel-
fand’s triplet and theory of differential solutions to transform the partial diffe-
rential equations into ordinary differential equations [1] [2]. 

The outline of this paper is as follows: in this second section we present the 
mathematical model; the third section is devoted to the main results of existence 
uniqueness and also estimation of the system; in the fourth section we conduct 
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the characterization of the optimal control and we end this work with a conclu-
sion and perspectives. 

2. Mathematical Model 

Let Ω  be a bounded domain of 3 , with boundary Γ  sufficiently regular. 
We denote by ( ), ,x y z=x  an element of Ω . 

We consider the following model: 

( ) ( ) 2 2

0 0

1min d d d d ,
2 2

T T
d

NJ v Dc v z t v t
Ω Ω

= − +∫ ∫ ∫ ∫x x          (1) 

subject to 

( ) ] [ ( )

] [ ( )
( ) ( )

( ) ] [ ( )

] [ ( )
] [ ( )

( ) ( )

3
1

0

0

in 0, 2.

0 on 0, 2.
,0 , in 2.

in 0, 2.

div 0 in 0, 2.
0, on 0, 2.

,0 in 2.

i
i

i

u cc d c g v T a
t x

c T b
c c c

u u u u p f T d
t

u T e
u T f

u u g

ν

=

 ∂∂
+ − ∆ = + Ω× ∂ ∂

 = Γ×


⋅ = Ω
∂

+ ⋅∇ − ∆ +∇ = Ω× ∂
= Ω×

 = Γ×
 ⋅ = Ω

∑

        (2) 

where: 
• zd is an observation function; D is a given linear continuous operator of ob-

servation; N is a given positif real; 
• c denotes the concentration of pollutants, g is a source term, d is a diffusion 

coefficient, v  represented the control which allows to act on the system; 
• ( )1 2 3, ,u u u u=  and ( ),p p t= x  denote respectively the velocity and the 

pressure of water, f external forces, ν  the kinematic viscosity; 
• Equations (2.a)-(2.c) modelling the transport and dissolution of pollutants; 
• Systems (2.d)-(2.g) is Navier-Stokes equations. 

We rewrite problems (1)-(2) in the following compact form: 

( ) ( )
Find such that :

min
ad

ad

v U

u U
J u J v

∈

∈
 =

                (3) 

where Uad denotes set of admissible controls. In this form it is easier to establish 
results of existence and uniqueness concerning the control when knowing some 
properties of J and Uad [3] [4] [5]. 

3. Main Results 

To make the theoretical study of system (2), we define the following Gelfand 
triplet: 

V H V ∗  , where the injections are continuous, dense and compact. 
We choose in this paper ( )1

0V H= Ω , ( )2H L= Ω  and  
( )( ) ( )1 1

0V H H∗ −′= Ω = Ω . 



D. Moustapha et al. 
 

166 

We assume that there exist two positive constants A and A* such that the fol-
lowing inequality hold: 

1 .V H VA
A

∗∗ ⋅ ≤ ⋅ ≤ ⋅                       (4) 

We also recall the following result concerning the Navier-Stokes equations 
whose proof can be found in [6]. 

Theorem 1. Let 0u  belonging to ( )2L Ω  a divergence field. Then there ex-
ists a unique solution u  of the Navier-Stokes equations associated to the initial 
data 0u , such that 

[ ] ( )( ) [ ] ( )( )2 2 1
00, ; 0, ;u L T L L T H∞∈ Ω ∩ Ω  

and 

( ) ( ) ( ) ( ) ( )22 2

2 2 2
00

1 10, d
2 2

T

LL L
t u t u uθ θ

ΩΩ Ω
∀ ≥ + ∇ ≤∫         (5) 

3.1. Main Result 1 

This first result concerning existence and uniqueness of solution of the model 
that governs the dissolution of pollutants: 

( ) ] [

] [
( )

3

1
on 0,

0 in 0,
,0 0, on

i

i i

u cc d c g v T
t x

c T
c

=

 ∂∂
+ − ∆ = + Ω×∂ ∂


= Γ×

 ⋅ = Ω

∑
            (6) 

For this we introduce Gelfand’s triplet for the following operators: 
2

2

2

2

2

2

0 0

: 0 0 : ,

0 0

x

V V
y

z

∗

 ∂
− ∂ 
 ∂

∆ = − → 
∂ 

 ∂ −
∂ 

               (7) 

and 

1

2

3

0 0

: 0 0 : .

0 0

u
x

U u V H
y

u
z

 ∂
 ∂ 

∂ ⋅∇ = → ∂ 
∂ 

 
∂ 

              (8) 

We consider a function [ ]: 0,C T V→  defined by: 

( )
( )
( )
( )

,
1: , where
3

,

kc t
C t kc t k

kc t

⋅ 
 = ⋅ = 
 ⋅ 

                  (9) 

and 
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( )
( )
( )

0

k g v
G k g v G V

k g v

+ 
 = + = + 
 + 

                    (10) 

With these notations Equation (6) becomes: 

( ) ( ) ( ) ( ) [ ]
( ) 0

. 0,
0 on ,

C t U C t d C t G t a e t T
C C H
 + ⋅∇ + ∆ = ∈
 =

�
         (11) 

where C�  denotes the derivative in the sense of the distributions of C and 

0

0 0

0

.
kc

C kc
kc

 
 =  
 
 

 

We define the space of solutions by: 

( ) ( )( ) ( )( ){ }2 1 2 1
00, 0, ; , 0, ; ,W T w L T H w L T H −= ∈ Ω ∈ Ω�        (12) 

where ( )( )2 1
00, ;L T H Ω  and ( )( )2 10, ;L T H − Ω  are equipped with the respec-

tive norms: 

( )( ) ( ) ( )( )2 1 1
0 0

1
2 2

0, ; 0
= d

T

L T H H
f f t t

Ω Ω∫                (13) 

and 

( )( ) ( )

( ) ( )( ) ( )1
1
0

1
2 2

2 0, ; 0
1 ( )0

,
= sup d 0.

T

L T H
H H

f t t
f t t

φ

φ
φ

φ
− Ω

∈ Ω Ω

     ≠     
∫      (14) 

Theorem 2. If ( )( )31
00, ;U L T H∞  ∈ Ω  , 0C H∈  and ( )2 0, ;G L T H∈  

then there exists a unique state: 

( ) ( )0, 0, ; ,C W T L T H∞∈ ∩                  (15) 

solution of the problem (11). 
Proof. To proof uniqueness we first establish the following intermediate re-

sult: 
( )( )32 1

00, ;U L T H ∀ ∈ Ω   and ( )2 0, ;C L T V∈  then for all [ ]0,t T∈ : 

( ) ( ) ( )( ) ,
, 0.

V V
U t C t C t ∗⋅∇ =                 (16) 

Indeed, 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

,

3

1

3 3

1 1

,

,

. . ,

V V

i
i i

i
i i

i i i i

V V

U t C t C t

C t
U t C t C t U t C t

x

C t U t
U C t C t U t C t C t

x x

U t C t C t U t C t C t

∗

∗

Ω Ω
=

Γ Ω
= =

Ω

⋅∇

∂
= ⋅∇ =

∂

∂ ∂ 
= − + 

∂ ∂ 
= − ∇ = − ∇

∑∫ ∫

∑ ∑∫ ∫

∫

     (17) 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,
2 . 0 . , 0.

V V V V
U t C t C t U t C t C t∗ ∗∇ = ⇒ ∇ =  

Assuming existence of two solutions 1C  and 2C  of (11), let denote by 
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1 2C C C= −  then C  satisfies the following equation: 

( ) ( ) ( ) ( ) [ ]
( )

1 2 2 1 1 . 0,
0 0 on .

C t d C t U C t U C t a e t T
C H
 + ∆ = ⋅∇ − ⋅∇ ∈


=

�
      (18) 

by multiplying the first equation of (18) by C  and integrating over [ ]0, t , we 
obtain: 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

0 0

2 2 1 10

, d , d

, d

t t

t

C C d C C

U C t U C t C

θ θ θ θ θ θ

θ θ

+ ∆

= ⋅∇ − ⋅∇

∫ ∫

∫

�
                         (19) 

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 2
1 20

2 2 2 1 1 10 0

1 1| | | 0 | , d
2 2

                                   . , d . , d

t

t t

C t C d C C C

U C t C U C t C

θ θ θ θ

θ θ θ θ

− = − ∆ −∆

− ∇ + ∇

∫

∫ ∫
 

using the monotony of ( ),t∆ ⋅ , we deduce that, ( ) ( ) ( )( )1 2 , 0C C Cθ θ θ∆ − ∆ ≥  
and using relation (16) we deduce that: 

( ) ( )2 21 1 0 0
2 2

C t C− ≤                    (20) 

( ) ( )2 2
0 ,C t C≤                         (21) 

since ( )0 0C = , we have ( ) 0 0C t C= ⇔ =  implying that 1 2C C= . 
To prove existence of the solution we first prove that the problem approached 

of the problem model has a unique solution and that this approximate solution 
converges to the exact solution. Let consider the following approached problem 
( )mP  of Equation (11) given by: 

( ) ( ) ( ) ( ) [ ]
( ) 0

d . 0,
0

m m m m

m m

C t U C t C t G t a e t T
C C
 + ⋅∇ + ∆ = ∈
 =

�
     (22) 

where ( ) ( )( )1: ,m
m j jiG G e e

=
= ⋅∑  and ( )0 01 ,m

m j jiC C e e
=

= ∑ . 
We assume that this approximated problem is posed on the subspace 

{ }1 2, , ,m mV Vect e e e= �  of the space V  which is separable, then there exists a 
sequence ( )m m

e ∗∈�
 such that: 

• m ∗∀ ∈� , The first terms 1 2, , , ne e e�  are linearly independent; 
• The set of linear combinations of elements of this sequence is dense in V  

(and therefore in H  and V ∗ ). 
Proposition 3. Under the assumptions of theorem (2), 1m∀ ≥ , (22) admits a 

unique solution mC  which belongs to mV . 
Proof. The proof is based on the Carathéodory’s theorem which we apply to 

the following function: 

[ ]: 0, defined bym
m mF T V× → �  

( ) ( ) ( )( ) ( )
1

, d , .
m

m m j m
i

F t X C t U X t e G t
=

 = − ∆ − ⋅∇ + ∑        (23) 

• mF  is measurable as ( ),v∆ ⋅  and ( ),U v⋅∇ ⋅  are measurable respectively in 
V ∗  and H , this function is also continuous in W [7] [8]; 

• the condition of minoration on any compact of mV  is assured by the fact 
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that ( ),t∆ ⋅  is bounded [ ]. 0,a e t T∈  in V ∗  and ( ),U t⋅∇ ⋅  is bounded in 
H  [ ]. 0,a e t T∈ . 

Then, for every 0X ∈Ω , there exists at least one solution to the system: 

( )
( ) 0

,
0

mX F t X
X X

 =
 =

�
                      (24) 

which is therefore the solution of (22). 
In order to demonstrate the convergence of the approximated solution to the 

exact solution, we establish the following priori estimation results. 
Proposition 4. If C  is a solution of (11) then: 

( ) ( )2 200, ; 0, ;

1 1| |
2L T V L T VC C G

dd
∗≤ +                         (25) 

( ) ( )200, ; 0, ;

2
L T H L T VC C G

d
∞ ∗≤ +                            (26) 

( ) ( ) ( )

( )

32 2 12 0

2

0 0, ; 0, ;0, ;

0, ;

2
2

 

L T V L T HL T V

L T V

dC C G A U
d

G

∗∗

∗

  Ω   

   
≤ + +   
   
+

�
   (27) 

Proof. To prove relation (25) we form the scalar product of the first equation 
of Equation (11) with C  and integrate over [ ]0,T , we obtain: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

, ,,

,

, , ,

,
V V V VV V

V V

C t C t U C t C t d C t C t

G t C t

∗ ∗∗

∗

+ ⋅∇ + ∆

=

�
   (28) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), ,,
, , , .

V V V VV V
C t C t d C t C t G t C t∗ ∗∗ + ∆ =�  

Integrate over [ ]0,T  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), ,0 0 0,
, d , d , d .

T T T

V V V VV V
C t C t t d C t C t t G t C t t∗ ∗∗ + ∆ =∫ ∫ ∫�  

then 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( )
2 20 ,

0 ,

, d , 0 , 0

, d

T

L LV V

T

V V

C t C t t C T C T C C

C t C t t

∗

∗

Ω Ω
= −

−

∫

∫

�

�
 

( ) ( )( ) ( ) ( )2 2

0 ,

1 1, d 0 .
2 2

T

V V
C t C t t C T C∗ = −∫ �  

We have: ( ) ( ) ( ) ( )1 2V V V
C t t C t C tα α∗∆ ≤ + ≤ : 

( ) ( )( ) ( ) ( )2
22 2

0, ;,0 0 0
, d d d

T T T

V L T VV V V
C t C t t C t C t t C∗∗∆ ≤ ∆ ≤ =∫ ∫ ∫  

and we deduce the following successive inequalities 

( ) ( ) ( )( ) ( ) ( )

( ) ( )2 2

,0 0

0, ; 0, ;

, d d

.

T T

VV V V

L T V L T V

G t V t C t t G t C t t

G C

∗∗

∗

+ ≤

≤

∫ ∫
 

( ) ( ) ( ) ( ) ( )2 2 2
2 2 2

0, ; 0, ; 0, ;

1 1 0 .
2 2 L T V L T V L T VC T C d C G C∗− + ≤  
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( ) ( ) ( ) ( ) ( )

( )

2 2 2
2 22

0, ; 0, ; 0, ;

2

1 10
2 2
1 0
2

L T V L T V L T Vd C G C C C T

C

∗− ≤ −

≤
 

( ) ( ) ( ) ( )

( ) ( )

2 2 2

2

2
2

0, ; 0, ; 0, ;

2

0, ;

1 1 10
2 42

1 10
2 2

L T V L T V L T V

L T V

d C G C G
dd

C G
d

∗ ∗

∗

 
− ≤ + 

 

 
≤ + 
 

 

( ) ( ) ( ) ( )2 2 20, ; 0, ; 0, ;

1 1 10
2 2 2L T V L T V L T Vd C G V C G

d d
∗ ∗

 
− + ≤ + 

 
 

( ) ( ) ( )2 20, ; 0, ;

1 10
2L T V L T Vd C C G

d
∗

 
≤ + 
 

 

( ) ( )2 200, ; 0, ;

1 1 .
2L T V L T VC C G

dd
∗≤ +

 

To establish relation (26) we integrate the scalar product over [ ] [ ]0, 0,t T⊂ : 

( ) ( )( ) ( ) ( )( )

( ) ( )( )
,0 0,

,0

, d , d

, d .

t t

V VV V

t

V V

C s C s s d C s C s s

G s C s s

∗∗

∗

+ ∆

=

∫ ∫

∫

�
              (29) 

( ) ( ) ( ) ( ) ( )2 2 2
2 2 2

0, ; 0, ; 0, ;

1 1 0 .
2 2 L T V L T V L T VC t C d C G C∗− + ≤  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2

2 2 2

0, ; 0, ; 0, ;

2

0, ; 0, ;

1 1 0
2 2

1 0 ,
2

L T V L T V L T V

L T V L T V

C t C d C G C

C G C

∗

∗

≤ − +

≤ +
 

Using (25) we have: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2 2
00, ; 0, ;

2 2
0 0, ; 0, ;

1 1 1 10
2 2 2

1 1 10
2 2

L T V L T V

L T V L T V

C t C G V C G
dd

C C G G
dd

∗ ∗

∗ ∗

 
≤ + + + 

 

≤ + +
 

( ) ( ) ( ) ( )

( ) ( )

2 2

2

2
2 2

0 0, ; 0, ;

2

0, ;

2 20

20

L T V L T V

L T V

C t C C G G
d d

C G
d

∗ ∗

∗

 
≤ +  

 

 
≤ + 
 

 

( ) ( ) ( )2
2

0, ;

20 ,L T VC t C G
d

∗≤ +  

then we have 

( ) ( )200, ; 0, ;

2| |L T H L T VC C G
d

∞ ∗≤ +  

To proof relation (27) we use the fact that the Laplacian is a bounded linear 
operator and the following lemma: 
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Lemma 3.1. ( )
31

0w H ∀ ∈ Ω   and for all ( )1
0z H∈ Ω  there exist two con-

stants β  and γ  such as: 

( ) ( )
31 1

0 0
.H Hw z w zγβ  Ω Ω 

⋅∇ ≤                   (30) 

Proof. For all ( )
31

0w H ∈ Ω   and for all ( )1
0z H∈ Ω , we have: 

( ) ( )132

2 223 3 32 2 2

1 1 1
d .i i HLi i ii i

z zw z w x w w z
x x ΩΩ Ω  Ω= = =  

∂ ∂
⋅∇ = ≤ ≤

∂ ∂∑ ∑ ∑∫ ∫      (31) 

According to Poincaré inequality there exist 0γ >  such as 

( ) ( )
3 32 2L Lw wγ   Ω Ω   
≤ ∇ : 

( ) ( )132

2 2 22
HL

w z w zγ
Ω Ω 

⋅∇ ≤ ∇  

( ) ( )131
0

2 2 22
HH

w z w zγ
Ω Ω 

⋅∇ ≤  

Norms 1
0H⋅  and 1H⋅  are equivalent in ( )1H Ω , so that there exist a posi-

tive constant β  such as: 

( ) ( )131 00

2 2 22 2 ,HH
w z w zγ β

Ω Ω 

⋅∇ ≤  

then we have 

( ) ( )
31 1

0H Hw z w zγβ  Ω Ω 
⋅∇ ≤  

Lemma 3.2. If ( )( )32 1
00, ;U L T H ∈ Ω   and ( )2 0, ;C L T V∈  then  

( )2 0, ;U C L T H⋅∇ ∈ . Furthermore 

( ) ( ) ( )
32 2 1 2

00, ; 0, ; 0, ;L T H L T H L T VU C U Cγβ   Ω   

⋅∇ ≤           (32) 

Proof. For all ( )( )32 1
00, ;U L T H ∈ Ω   and for all ( )2 0, ;C L T V∈ , we have: 

( )2
2 2

0, ; 0
d .

T

L T HU C U C t⋅∇ = ⋅∇∫                 (33) 

According to Lemma (3.1) we have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

32 1 1
0 0

2 131 00

2 22 2 2
0, ; 0 0

2

0, ;

d d ,

d ,

T T

L T H H H

L T H HH

U C U t t C t t

U C U t C

γ β

γβ

 Ω Ω 

Ω Ω 

⋅∇ ≤

⋅∇ ≤

∫ ∫
      (34) 

Consider ( )2 0, ;L T Vφ ∈  and we form the scalar product of the first equation 
of (11) with φ : 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

, ,,

,

, , ,

,
V V V VV V

V V

C t t U C t t d C t t

G t t

φ φ φ

φ

∗ ∗∗

∗

+ ⋅∇ + ∆

=

�

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )
, ,,

,

, , ,

,
V V V VV V

V V

C t t U C t t d C t t

G t t

φ φ φ

φ

∗ ∗∗

∗

= − ⋅∇ − ∆

+

�
           (35) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )
, ,0 0 0,

,0

, d , d . , d

 , d

T T T

V V V VV V

T

V V

C t t t d C t t t U C t t t

G t t t

φ φ φ

φ

∗ ∗∗

∗

≤ ∆ + ∇

+

∫ ∫ ∫

∫

�
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( ) ( )( ) ( ) ( ) ( )2 0, ;,0 0
, d

T T

V L T VV V
C t t t C t t C A Cφ φ ∗∗∆ ≤ ∆ ≤ ∆ ≤∫ ∫

 

( ) ( )( ) ( ) ( )
32 1 2

00, ; 0, ;,0
, d .

T

L T H L T VV V
U C t t t U Cφ γβ∗   Ω   

⋅∇ ≤∫  

( ) ( )( ) ( ) ( )
32 1

00, ; 0, ;,0
, d .

T

L T H L T HV V
U C t t t U Cφ ∞∗   Ω   

⋅∇ ≤∫  

Finally we get 

( ) ( )( )

( ) ( ) ( ) ( )32 2 1 2
0

0 ,

0, ; 0, ; 0, ; 0, ;

, d

,

T

V V

L T V L T H L T H L T V

C t t t

dA C U C G

ϕ ∗

∞ ∗  Ω   

 
≤ + + 
 

∫ �

 

Using estimates (25) and (26), we obtain: 

( ) ( ) ( ) ( )

( ) ( ) ( )

32 2 12 0

32 1 2 2
0

0, ; 0, ;0, ;

0, ; 0, ; 0, ;

0
2

2 ,

L T V L T HL T V

L T H L T V L T V

Ad AdC C G U
dd

U G G
d

∗∗

∗ ∗

  Ω   

  Ω   

≤ + +

+ +

�

 

To achieve the proof of Theorem 2 it must be shown that the approximate so-
lution ( )mC  converges to the exact solution in ( )0,W T . By construction, the 
result of initial states ( )0m m

C ∗∈�
 converges to 0C  in H .  

Using the relation (25), we deduce that the terms of the sequence ( )mC  is 
bounded in ( )2 0, ;L T V  which is a reflexive Banach space. We can extract a 
subsequence that is weakly convergent in ( ) ( )( )2 20, ; , 0, ;L T V L T Vσ ∗ . 

Let denote by ( )nCφ  this subsequence where :φ →   is a function strictly 
increasing such that: 

( ) ( )2
1 weakly in 0, ;nC C L T Vφ →                 (36) 

From relation (26) we deduce that the sequence ( )mC  are bounded in 
( )0, ;L T H∞  which is the dual of ( )1 0, ;L T H . Then there exists a sub-sequence 

which converges weakly towards 2C  such as: 

( ) ( )2 weakly in 0, ; ;nC C L T Vφ
∞→                (37) 

Using relation (27) we obtain the weak convergence ( )nCφ
�  to ( )2 0, ;L T Vα ∗∈  

i.e: 

( ) ( )2weakly in 0, ;nC L T Vφ α ∗→�                (38) 

According to [9] [10], we deduce that 1 2C C C= =  and C α=� . 
On the other hand let j∈  fixed, m∀ ∈�  denoting by ( )mC  the unique 

solution of ( )mP  then when m → +∞  we obtain: 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,m m m j jU C t d C t G t e U C t d C t G t e⋅∇ − ∆ − → ⋅∇ − ∆ −  

and 

( )( ) ( )( ), , .m j jC t e C t e→� �                  (39) 

Since the family { },je j ∗∈  is dense in V  thus: 
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( ) ( ) ( ) ( ) [ ]. 0, .C t U C t d C t G t p p t T+ ⋅∇ + ∆ = ∈�  

Also to [10], we can extract a subsequence noted again Cn such as [ ]. 0,p p t T∈ , 
( )( )nC t ∗

 converges to ( )C t . Considering the continuous representative C , 
we obtain strong convergence ( )( )0nC ∗

 towards ( )0C . 

3.2. Regularity of the Solution 

Let C  be the unique solution of (11) and C q+  a perturbed one of (11). We 
suppose that 0C  and Hλ ∈ , F , ( )2 0, ,G L T V ∗∈  and aU ,  

( )( )31
00, ;bU L T H∞  ∈ Ω  , then q  satisfies the following equation: 

( ) ( ) ( ) ( )( ) ( ) ( ) [ ]
( )

. 0,

0
a bq t U q t U C t q t d q t F t a e t T

q λ

 + ⋅∇ + ⋅∇ + + ∆ = ∈


=

�
 (40) 

Effect the scalar product of (40) by ( )q t  and integrate over [ ] [ ]0, 0,t T⊂ , 
we obtain: 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2

0 0

0 0

1 1 , d . , d
2 2

, , d .

t t
a b

t t

q t U q s q s s U C s q s q s s

d q t q t F s q s s

λ− + ⋅∇ + ∇ +

+ ∆ =

∫ ∫

∫ ∫
(41) 

∆  being monotonous then: 

( ) ( ) ( ) ( )( )( ) ( ) ( )( )2 2

0 0

1 1 , d , d .
2 2

t t
bq t U C t q t q t s F t q t sλ− + ⋅∇ + =∫ ∫  

By Lemma 3.2, we have: 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

31 110 00

1 1
0

2 2

0

0

2 d

 2

t
b H HH

t

H H

q t U C s q s q s s

F s q s

λ βγ

−

 Ω ΩΩ 

Ω Ω

≤ + +

+

∫

∫
 

Let: 

( ) ( ) ( ) ( )
( )

( ) ( )
31 110 0

2 b H HH
s U C s q s F sη βγ − Ω ΩΩ 
= + +  

then 

( ) ( ) ( ) ( )1
0

2 2

0
.

t

H
q t s q sλ η

Ω
≤ + ∫  

According to Willet-Wong’s inequality we deduce: 

( ) ( )
0

1 d ,
2

t
q t s sλ η≤ + ∫  

Using relation (25), one can have a priori estimation of q  solution of (40). 
There exist a constant , ,W FMλ  as if λ , ( )( )2 10, ,L T HF − Ω

 are increased then: 

( ) ( ) ( ) ( )
31 1

0, ,0 0
d d

t t
W H b H H

q t M U s F s sλλ βγ − Ω Ω 
≤ + +∫ ∫  

( ) ( ) ( ) ( )( )31 2 1
0, , 0, ; 0, ;

.W H b L T H L T H
q t M U F sλλ βγ ∞ −  Ω Ω   

≤ + +  

Let { }, ,max 1, W HMλρ βγ= , then: 

( ) ( ) ( ) ( )( )31 2 1
00, ; 0, ;b L T H L T H

q t U F sρ λ ∞ −  Ω Ω   

≤ + +         (42) 
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3.3. Main Result 2 

The space of admissible controls considered in this paper is ( )2 0, ;adU L T H= . 
Theorem 5 The optimal control problem (3) has a unique solution adW U∈  

And we have the following inequality: adV U∀ ∈ : 

( ) ( ) ( )2 0, ;

4 .L T HW V J V J W
N

− ≤ −                 (43) 

Proof. to proof this result, one can proof that the functional J is inferior semi- 
continuous, strongly convex and differentiable. 

Let us proof that J  is inferior semi-continuous. We consider a sequence 
( ),n nC V  in ( )( ) ( )2 1 2

00, ; 0, ;L T H L T HΩ ×  which converges strongly to ( ),C V , 
we can extract a subsequence also denoted by ( ),n nC V  such that: 

( ) ( )( ) ( ) ( )( ) ( ) ( )1 2
0, , . in .n nC t V t C t V t a e H L→ Ω × Ω         (44) 

Let denote by ( )( ) ( )( ) ( )( )( ),L C t V t X C t Y V t= +  with: 

( ) [ [ ( ) ( )( ) ( )

( ) [ [ ( ) ( )( )

21
0

22

: 0, d

: 0, d

dX H C t X C t DC v z

Y L V t Y V t V
Ω

Ω

Ω → +∞ → = −

Ω → +∞ → =

∫
∫

x

x
 

X  and Y  are inferior semi-continuous then: 

( ) ( )( ) ( ) ( )( ), lim inf ,n n
n

L C t V t L C t V t
→∞

≤               (45) 

Apply Fatou’s lemma to the sequence ( ) ( )( ),n nL C t V t  we obtain: 

( ) ( )( ) ( ) ( )( )
0 0

lim inf , d lim inf , d ,
T T

n n n n
n n

L C t V t t L C t V t t
→∞ →∞

≤∫ ∫  

according to (45) we have: 

( ) ( )2 22

0 0 0

2

0

1 1d d d ,d lim inf d d
2 2 2

 lim inf d d
2

T T T
d n d

n

T
n

n

NDC v z t V t DC v z t

N V t

Ω Ω Ω→∞

Ω→∞

− + ≤ −

+

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

x x x

x
 

( ) ( )lim inf .n
n

J V J V
→∞

≤  

So that J  is inferior semi-continuous. 
To proof the strong convexity, we choose ( )2and 0, ;W V L T H∈ , then: 

( )

( )( ) ( )( )

2

2

0, ;

2

0

2 2 2

1 1 1 d d .
2 2 2

L T H

T
d d

W V N W VJ

DC V z DC W z t
Ω

+ +  = 
 

+ − + −∫ ∫ x

    (46) 

Applying the first unequally Clarkson to the first term in right member, we 
obtain: 

( ) ( )
( )

( )( ) ( )( )

2 2
2

2
2 2

0, ; 0, ;
0, ;

2

0

1 1
2 2 2 2 2

1 1 1 d d
2 2 2

L T H L T H
L T H

T
d d

W V N W VJ W V

DC v z DC w z t
Ω

 + −  ≤ + −  
    

+ − + −∫ ∫ x
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By applying the equality of the parallelogram to the second term the right 
member, we obtain: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2 2

2

2 2 2

0, ; 0, ; 0, ;

2 2

0 0

2

0, ;

2 4 4 8
1 1 d d d d
4 4

 .
8

L T H L T H L T H

T T
d d

L T H

W V N N NJ W V W V

DC W z t DC V z t

N DC W DC V

Ω Ω

+  ≤ + − − 
 

+ − + −

− −

∫ ∫ ∫ ∫x x  

( ) ( ) ( )

( ) ( )

2 2 2
2 2 2

0, ; 0, ; 0, ;

2 2

0 0

2 4 4 8
1 1 d d d d
4 4

L T H L T H L T H

T T
d d

W V N N NJ W V W V

DC W z t DC V z t
Ω Ω

+  ≤ + − − 
 

+ − + −∫ ∫ ∫ ∫x x
 

( ) ( )
( )2

2

0, ; .
2 2 8 L T H

J W J VW V NJ W V
++  ≤ − − 

 
                   (47) 

And the differentiability of J  is proved by calculating the following limit: 

( ) ( )
0

lim .
J V W J V

θ

θ
θ→

+ −
                  (48) 

Let us denoted by C
�

 the trajectory corresponding to ( ) ( )V t W tθ+  then 
C
�

 satisfies the following equation: 

( ) ( ) ( ) ( ) ( ) ( ) [ ]
( )

0

0

. 0,
0 in .

C t U C t d C t G t V t W t a e t T
C C H

θ + ⋅∇ + ∆ = + + ∈


=

� � ��
� �   (49) 

( ) ( )
2 2

0 0

2 2

0 0

1 d d d d
2 2

1 d d d d
2 2

T T
d

T T
d

NJ V W J V DC z t V W t

NDC z t V t

θ θ
Ω

Ω

+ − = − + +

− − −

∫ ∫ ∫

∫ ∫ ∫

x x

x x

�

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 2 2

0 0

0

0

0

2
0

1 d d d d
2 2
1 , , d
2

 , , d
2

1 , ( ) , d
2

 2 , , d
2

T T
d d

T
d d d d

T

T
d d d d

T

J V W J V
NDC z DC z t V W V t

DC z DC DC DC z DC z DC z t

N V W V W V V t

DC z D C C DC z DC z DC z t

N V W W W t

θ

θ

θ θ

θ θ

Ω

+ −

   = − − − + + −    

 = − − + − − − − 

+ + + −  

 = − − + − − − − 

 + + 

=

∫ ∫ ∫

∫

∫

∫

∫

x x�

� �

� �

( )( ) ( )( )
( ) ( )

0

2
0

1 , , d
2

 2 , , d
2

T
d d

T

DC z D C C D C C DC z t

N V W W W tθ θ

 − − + − − 

 + + 

∫

∫

� � �

 

Let us designed by 

0
ˆ lim ,C CC

θ θ→

−
=

�
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then 

( ) ( ) ( ) ( )
( )

00

0

1 ˆ ˆlim , , d
2

, d

T
d d

T

J V W J V
DC z DC DC DC z t

N V W t

θ

θ
θ→

+ −  = − + − 

+

∫

∫

�
 

( ) ( ) ( ) ( )
0 0

1 ˆ ˆ, , d , d
2

T T
d dJ V W DC z DC DC DC z t N V W t ′ = − + − + ∫ ∫�  

Note that if 0θ →  then C C→�  

( ) ( )
0 0

ˆd d d d
T T

dJ V W DC z DC t N VW t
Ω Ω

′ = − +∫ ∫ ∫ ∫x x          (50) 

According to these properties of J  we conclude that problem (3) admits an 
unique minimum W  on adU . 

From relation (47) we have the inequality: 

( ) ( ) ( )2 0, ;

4 .L T HW V J V J W
N

− ≤ −    

As ( )2= 0, ;adU L T H  then 

( ) ( )
0 0

ˆd d d d
T T

dJ V W C z C t N VW t
Ω Ω

′ = − +∫ ∫ ∫ ∫x x            (51) 

search Ĉ , i.e. the tangent model: In fact 
( ) ( )49 11

θ
−

, we obtain: 

. ,C C U C U C C Cd w
θ θ θ
− ⋅∇ − ∇ −

+ − ∆ =
� � � ��

              (52) 

by tender 0θ → , we obtain 

( )

ˆ ˆ ˆ

ˆ ,0 ) 0,

C U C d C W

C

 + ⋅∇ − ∆ =


⋅ =
                    (53) 

since U U→�  when 0θ → . 

3.4. Main Result 3 

Theorem 6. If D is a surjective operator of the space ( )2 0, ;L T V  in 
( )2 0, ;L T V  or D is the identity application of ( )2 0, ;L T V  then the control V is 

given by: 
1V N P−= −                         (54) 

where P is the solution of the adjoint equation. 
First Case: We assume that D is an injective operator define from the space in 
( ) ( )2 20, ; 0, ;L T V L T H→  and ( )2 0, ;dz L T V∈ , then the adjoint equation is 

given by: 

( ) 0
dP U P d P C z

P T
− − ⋅∇ − ∆ = −
 =

�
                  (55) 

Seconde Case: D is the identity operator define from ( ) ( )2 20, ; 0, ;L T V L T V→  
when ( )2 0, ;dz L T V∈  then adjoint equation is given by: 
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( ) 0
dP U P d P C z

P T
− − ⋅∇ − ∆ = −
 =

�
                  (56) 

when ( )2 0, ;dz L T H∈  the adjoint equation becomes: 

( )( )
( ) 0

x dP U P d P I C z
P T

− − ⋅∇ − ∆ = ∆ + −
 =

�
             (57) 

Proof. The derivative given by (51) is unusable since for each test W we must 
solving the tangent model (53). The introduction of the adjoint state allows us to 
obtain a explicit expression of J ′  [11] [12]. 

We first perform the scalar product of the first equation of (53) with P and 
then integrate by parts we obtain: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0
ˆ ˆ ˆ, d 0 0 , d

T T
C t P t C T P T C P P t C t t= − −∫ ∫          (58) 

( )( ) ( ) ( )

( )
0 0 0 0

0

ˆ ˆ ˆ ˆ, d d d d d

ˆ, d d

T T T T

T

U C t P t UC P t UCP t UP C t

U P C t

Ω Γ Ω
⋅∇ = ∇ = − ∇

= − ⋅∇

∫ ∫ ∫ ∫ ∫ ∫ ∫

∫

x

x
 

( )0 0 0 0

0 0

ˆ ˆ ˆ ˆ, d d d d d d d

ˆ ˆd d d d .

T T T T

T T

C P t CP t CP t C P t

CP t PC t

Ω Γ Ω

Γ Ω

∆ = ∆ = − ∇ ∇

= − + ∆

∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

x x x

x x
 

with additional conditions on P  given by: 

( ) ( ), 0, , 0P t T P t= = = ∈Γx x x  

we obtain: 

( )0 0
ˆd d d d

T T
P U P d P C x t WP t

Ω Ω
− − ⋅∇ − ∆ =∫ ∫ ∫ ∫ x�  

By identifying this result with the first term of ( )J V W′ , one obtains the ad-
joint equation according to the nature of the operator D  given by (55)-(57) 

To characterize the control we consider the two cases given by relations (56), 
and (57). Then if the adjoint equation is given by the proof is the same for both 
cases D . The adjoint equation is given by: 

( )
( ) 0

dP U P d P C z
P T

− − ⋅∇ − ∆ = −
 =

�
 

In this case relation (51) becomes: 

( ) ( )
0 0

ˆd d d
T T

dJ V W C z C t N VW t
Ω Ω

′ = − +∫ ∫ ∫ ∫ x            (59) 

We form the scalar product between the first equation of the adjoint equation 
with Ĉ  and we integrate over [ ]0,T , we obtain: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0
ˆ ˆ, d 0 0 ,

T T
P t C t C T P T C P C t P t= − −∫ ∫�            (60) 

( )( ) ( ) ( )
( )

0 0 0 0

0

ˆ ˆ ˆ ˆ, d d d d d

ˆ, d d

T T T T

T

U P t C t UP C t UPC t UC P t

U C P t

Ω Γ Ω
⋅∇ = ∇ = − ∇

= − ⋅∇

∫ ∫ ∫ ∫ ∫ ∫ ∫

∫

x

x
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( )0 0 0 0

0 0

ˆ ˆ ˆ ˆ, d d d d d d d

ˆ ˆd d d d .

T T T T

T T

P C t PC t PC t P C t

PC t CP t

Ω Γ Ω

Γ Ω

∆ = ∆ = − ∇ ∇

= − + ∆

∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

x x x

x x
 

We have therefore: 

( ) ( )( )
( )

0 0

0 0

ˆ ˆ ˆ ˆ, d , d

, d d d .

T T

T T

P U P d P C t P C t U C C t

P W t PW t
Ω

− − ⋅∇ − ∆ = + ⋅∇ + ∆

= =

∫ ∫

∫ ∫ ∫ x

�
 

So that thus one can write J ′  as follows (51) give: 

( ) ( )0 0
ˆd d d d

T T
J V W P U P d P C t N VW t

Ω Ω
′ = − − ⋅∇ − ∆ +∫ ∫ ∫ ∫x x�  

( )
0 0

d d d d
T T

J V W PW t N VW t
Ω Ω

′ = +∫ ∫ ∫ ∫x x  

( ) ( )
0

d d 0
T

J V W P NV W t
Ω

′ = + =∫ ∫ x                          (61) 

His equation had to be satisfied whatever the disturbance on W , especially if 
0W ≠ . Necessarily, we have: 

0.P NV+ =                         (62) 

4. Conclusions 

The aim of this paper is a mathematical analysis of an optimal control problem 
of surface water pollution by using a triplet of evolution adapted to order of de-
rivations. This technique allowed us to propose theorems not only of existence 
and uniqueness of the control but also of the solution of the equation that go-
verns the constraints which is nonlinear. Then we solved the control problem 
directly and gave an optimal control characterization by using the adjoint equa-
tion. 

It is essential to remember that this study only allowed us to characterize the 
optimal control without giving an analytical expression of it. In a future work we 
will proceed to a numerical approximation of this model in order to propose so-
lution to the decision makers. 
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