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Abstract 
Providing for a comprehensive model of physics that describes both the 
discrete and non-discrete behavior of matter has proved difficult and elu-
sive. Using a new approach, we express Heisenberg’s uncertainty principle in 
terms of measure and counts of those measures to resolve an expression con-
sisting entirely of counts. Three arguments are presented each identifying one 
property of measure. Firstly, the three measures—length, mass and time—are 
each shown to have a physically significant lower bound. Secondly, each 
measure is shown to be discrete throughout the entire measurement domain. 
And thirdly, measure is shown to be the result of three frames of reference: 
the observer, the observed and the universe. Using these observations alone, 
the model resolves values for Planck’s constant, the gravitational constant and 
gravitational curvature. 
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1. Introduction 

A bounded system with discrete behavior may be identified anywhere there 
is a count of a reference behavior. Notably, understanding discreteness requires 
that we identify the reference and that will require a nomenclature that accom-
modates both discrete and non-discrete terms. We begin by introducing a 
second set of terms alongside the first, the two terms each capable of following a 
distinct set of mathematical operators. 

The proposed approach achieves the design such that there are two terms for 
each measure, the reference measure and some count of that reference. Initially, 
Planck’s Units are used as a guide in understanding the reference measures, 
length, mass and time. For the second term, the letter n followed by the corres-
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ponding subscript for each measure, nL, nM and nT is used to describe counts of 
the reference measures. Combined, the new nomenclature allows us to distin-
guish discrete from non-discrete properties of a phenomenon without assuming 
the composition. That is to emphasize, the values of the measures do not need to 
be resolved. Nor is it necessary to assume that the measures are the smallest 
physically significant measures or that the counts are integer. The operators, 
values and discreteness of each term are resolved entirely from the physical 
record. 

Of notable interest are commonly used physical expressions that may be de-
scribed without measure. That is, we may reduce expressions, such as escape ve-
locity and the Heisenberg uncertainty principle, using equivalent representations 
of reference measures and counts of those measures such that only the count 
terms remain. The reference measures cancel out leaving commensurable di-
mensionless relations, an interesting result that quickly distinguishes dimen-
sional expressions from geometric phenomena. For this reason, dimensional 
homogeneity requires a broader understanding than the usual constraints en-
countered when working only with measure. 

To correlate this new approach to a specific phenomenon, we focus our atten-
tion on Heisenberg’s uncertainty principle. Reducing the expression allows us to 
present a three-tiered argument. That is, that each measure has a physically sig-
nificant lower bound, that measure is discrete throughout the entire physical 
domain and that measure is a function of three frames of reference. 

With respect to frames of reference, measure has been portrayed historically 
as a function of the observer and the observed with a description of light anc-
horing a third frame, which we will call the universe for lack of a more physically 
specific term. This traditional approach is not ideal as it constrains our under-
standing of measure to just one aspect of the universal frame, a description of 
length with respect to time c = l/t. Of equal importance are the boundary rela-
tions m/t and l/m. When incorporating all three terms with respect to the three 
frames of reference, an expanded understanding of the relationship between 
measure and that which is measured is achieved. 

In Section III we apply the principles of discrete measure to the description of 
phenomena. Several predictions are resolved such as a quantum description of 
gravity, a new approach to resolving the gravitational constant G, Planck’s re-
duced constant ħ, specific polarization measures necessary for the quantum en-
tanglement of X-rays and the previously discussed quantum presentation of 
Heisenberg’s uncertainty principle. 

Also addressed are the obstacles met by Planck and others in the search for a 
physically significant connection to Planck’s Units. This requires a gravitation-
ally independent approach to resolving Planck’s constant. And with that, both 
discrete and non-discrete solutions to ħ can be used to resolve G. 

The results are as expected. Only the discrete approach predicts a value for G 
accurate to six significant digits. The non-discrete approach is measurably in-
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correct. Furthermore, support for discrete measure resolves one more hurdle. It 
constrains measure to whole-unit counts of the reference measures, eliminating 
singularities. 

Further reading and explanation of each of these phenomena are available in 
the published record [1] [2] [3]. The focus of this paper is not with respect to 
applications of measurement quantization, but to discuss the foundations of 
modern theory, what is measure and how do bounds to measure lead to discrete 
behavior. 

2. Methods 
2.1. Theoretical Landscape 

A review of the theoretical landscape with respect to a discussion of the founda-
tions of modern theory is difficult. But that is not to say that physicists are not 
fully engaged in questioning the nature of spacetime, the qualities and/or prop-
erties of space and time or their emergence. For this, there is a great deal of lite-
rature. Thus, such literature does have a significant presence. Although answers 
to some of these inquiries are addressed, the questions we begin with are more 
basic. We might say the question we begin with is often singular. For instance, 
what is measure? 

It is in this more constrained light that the theoretical landscape is sparse. Yes, 
modern theory does address the relative nature of measure, that the dimensions 
length, mass and time are correlated, but to date there is no expression describ-
ing their collective correlation without the introduction of several constants. 
This is quite surprising given the limited number of solutions to their relation. 
For instance, wouldn’t one just introduce a constant x and seek to understand its 
physical significance: lm = xt? 

Perhaps. But, as simple as this may be, this has not stopped modern theorists 
from developing more complex models, some of which have been immensely 
successful. Namely, the most notable of these is relativity or of particular interest 
Special Relativity (SR) which describes the relation between an observer and a 
target as geometry. Typically, the observer sits in a conceptual framework re-
ferred to as the inertial frame of reference, or more specifically a state not expe-
riencing the action of force. The model is very accurate. But, is it the most cor-
rect model considering several issues regarding the appearance of singularities? 

This again depends on the questions we are asking. Consider yet a new line of 
inquiry. At the base of SR, we have mathematical principles which depend on 
and originate around use of the Pythagorean Theorem. We have a concept of 
frames of reference and some prerequisite properties which we have assigned or 
at least with which we identify these frames of reference. But, how many frames 
of reference should there be? Exactly why are there one, two or even more 
frames of reference? One might conjecture, for instance that the number of 
frames important to the concept of measure should, after all, be a function of the 
Pythagorean Theorem, which has three terms. Thus, are there not three frames 
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of reference and if this is readily agreed to, then how have we evolved modern 
theory to account for the behavior of matter with respect to each of the three 
frames? 

We offer these thoughts only to entice the reader to consider that measure is 
not well understood. And while definitive answers can be provided, the greater 
goal is also to bring to the reader’s attention that it is very difficult to provide a 
literary context for a subject that has not been addressed. Specifically, modern 
theorists by-in-large focus on the physical observations of virtual particles in a 
vacuum, on the discrete behavior of phenomena in nature, on symmetries, and 
finally in investigations that encompass an expansive field which we may collec-
tively aggregate under the title of mathematical fitting of measurable free va-
riables. Examples of this latter field include modified gravity and Modified 
Newtonian Dynamics (MOND) but extend also to include approaches that adapt 
complex mathematical descriptions to observational data; for instance, String 
Theory, Loop Quantum Gravity (LQG), Supersymmetry (SUSY) or even some-
thing as tangible as ΛCDM. Are these approaches any less important than the 
old school classical approaches that gave rise to SR? 

Before proceeding, it would be most appropriate to call out LQG as a formid-
able model of physical theory built on the idea that nature is discrete. With re-
spect to the research presented within, this approach is in part accurate and 
askew in only one minor, but very important way. The mathematical tools used 
in LQG also become less useful in consideration of this research where only the 
simplest concepts from classical mechanics suffice. That said, LQG is a pioneering 
field that has offered many insights into the behavior of phenomena and should 
not be underestimated. The reasons behind this will become clearer as we proceed. 

With respect to the theoretical landscape, we may agree that there is legitimate 
and significant work occurring in all of these approaches. But we add that 
meaning, that thing which provides a complete picture, a comprehensive expla-
nation of physical phenomena that is universal across all fields of modern theory 
cannot arise from the fitting of free variables to a generalized model describing 
what is observed. Rather, it is the role of theory to identify inarguable principles 
that reside below the data that give rise to the laws which we use to describe the 
behavior of matter. 

To demonstrate the importance of this need, consider the case of a physicist 
that delivers an expression ([3], Eq. 66) describing the orbital dynamics of stars 
about a galactic core. Would we not still ask why this expression exists? Or, at 
least, should we not ask what its relation is to the other laws which describe pla-
netary orbital dynamics, localized gravity or at least apples falling from trees? 
This is the role of theory, and so once again we find ourselves asking, what is the 
theoretical landscape of the published literature that addresses the fundamental 
questions underneath the fundamental questions? 

And while we may argue that there exists an entire field of study called mea-
surement theory and even yet the very successful field of LQG, it is with this 
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grander view of physical endeavor that we bring into focus a new question which 
reminds the reader how a model should work. Why are there 26 constants? 

And thus, we must start over yet again, but this time we begin with nothing. 
To be more precise, we assume nothing about measure with a nomenclature that 
allows for a variety of possibilities. In this approach, we introduce the idea of a 
fundamental measure and counts of those measures. For example, time would 
then be described as t = nTtf such that nT is some count of a fundamental unit of 
time tf. Bear in mind, we assume nothing about the values of either the counts or 
the measures. Both may vary, take on any value, be found entirely redundant or 
physically meaningless. 

With this new nomenclature, we then present descriptions of phenomena. 
Carefully selected, we resolve the count and measure values. More importantly, 
we resolve why the values exist and where they are applicable. This is the ap-
proach taken in this paper and it would be inappropriate to address those find-
ings without carefully leading the reader through the physical support on which 
our conclusions are based. 

That said, there exists one exception important to this discussion. The ap-
proach demonstrates that objects in the universe behave non-discretely, but 
there are bounds to measure that constrain the precision of those observations. 
Moreover, the behavior of matter follows not the non-discrete frame, but the 
discrete frame of the third frame. This is a shared property of the observer’s 
frame best described by Heisenberg’s Uncertainty Principle. What is less obvious 
is that a mathematical description of nature that is discrete and a mathematical 
description of nature that is non-discrete can be combined in such a way to real-
ize their difference. It is this difference that defines and allows us to resolve the 
constants of nature (the upper and lower bound relations between the counts of 
the fundamental measures) and the laws of nature (more complex relations that 
may be reduced to an expression describing the relation of the fundamental 
measures). And it is as such that we are no longer approaching modern theory 
with expressions that describe nature, but a wholistic approach that can resolve 
the constants and expressions themselves from a more fundamental model of 
understanding. For this, there is no theoretical landscape. 

2.2. Physical Significance of Measure 

In modern theory, the expressions we use to describe the behavior of matter are 
presumed to be physically significant to any mathematical precision. But, we al-
so recognize that measure has a lower bound, a measure where the effects de-
scribed by quantum mechanics constrain the precision of measure with respect 
to the length, mass and elapsed time associated with a phenomenon. Heisen-
berg’s Uncertainty Principle is one tool we may use to identify the scope of a 
physically significant measurement domain. Before we begin, we recognize that 
light may be described as a count nL of length units lp divided by a count nT of 
time units tp, L p T pc n l n t=  such that  
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L Tn n= .                           (1) 

We also recognize Planck’s unit expressions for length lp and mass mp which 
serve as reasonably accurate dimensional approximations describing measure. 

1 2

3p
Gl

c
 =  
 

 ,                         (2) 

1 2

p
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G
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 .                         (3) 

For p pc l t=  and the above two Planck expressions, we resolve that their 
product is 

2 2
3 2
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= =
   ,                      (4) 
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t
= =

.                       (5) 

Then, using Heisenberg’s expression to describe the uncertainly associated 
with the position σX and momentum σP of a particle, 

2X Pσ σ ≥


                          
(6) 

we may resolve physically significant values for nL, nM and nT. The uncertainty 
principle asserts a limit to the precision with which certain canonically conjugate 
pairs of particle properties can be known. Notably, the described uncertainty is 
with respect to the properties of position and momentum. We may consider, as 
such, describing each property as a variance of many possible certain measures. 
While the expression for variance is written to describe the certain properties of 
many particles, we modify this usage to describe the certain properties of many 
possible measurements whereby which measurement is applicable or even phys-
ically significant is uncertain. 

( ) ( )2 2

1 1

1 1 2

N N

i i
i i
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N N
= =

− −
=

− −

∑ ∑


.                 (7) 

Such that all counts N are reducible to a certain measure describing a single 
particle, we consider the case for N = 2 random measures, although any value of 
N will produce certain measures for all properties. Thus, the variances for posi-
tion and momentum reduce such that there is a certain length l corresponding to 
the variance in X and a certain momentum mv corresponding to the variance in 
P. As before, we write each variance in MQ nomenclature such that l = nLrlp and 
mv = ml/t = nMmp(nLlp/nTtp). Notably, the velocity change count nL is distinctly 
different than the position count nLr, the latter which describes the distance be-
tween the observer and the particle. 
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With these constraints, it follows that the position of a particle at the thre-
shold ħ/2 is a certain distance nLrlp from the observer. And the mass nMmp and 
the velocity nLlp/nTtp are products of their respective, certain, reference measures. 
Replacing the value ħ with the result from Eq. (5), then 

( )
2

2
L p p p

Lr p M p
T p p

n l l m
n l n m

n t t
 

=  
 

,                  (9) 

2 Lr M L Tn n n n= .                       (10) 

Note also, the reference measures are no longer present (i.e. a geometric rela-
tion). This does not imply that the reference measures are physically significant 
or that the counts are integers. To resolve an understanding of what values are 
permitted, we will need new tools starting with a new description of G that does 
not include Planck’s reduced constant. Taking the Planck mass divided by the 
Planck length, then 
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With this, we consider two expressions at the v = c bound also in terms of 
Planck Units, escape velocity and orbital motion. You will recognize the first as 
the Schwarzschild radius. When generalizing the values for any distance count 
nLr and any mass count nM, then 

1 22GMv
r
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,                       (14) 
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,                   (15) 

2Lr Mn n= .                         (16) 

Such that the orbital motion expression differs by a factor of two ( )1 2v GM r= , 
the corresponding reduction follows the same path. 

Lr Mn n= .                         (17) 

Recognition of the speed-of-light bound condition identifies a constraining 
relation between length and mass counts, specifically the length count nLr be-
tween the observer and a target with respect to the mass count nM corresponding 
to a gravitational mass. Use of the relation in Heisenberg’s uncertainty expres-
sion constrains our understanding of the relation between these two phenomena. 
Starting with Heisenberg’s reduced expression Equation (10) 2 Lr M L Tn n n n=  
and Equation (1) L Tn n= , then 
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2 1Lr Mn n = .                         (18) 

At this time, we may apply the orbital motion expression to describe a par-
ticle’s angular position with respect to a gravitational center or the escape veloc-
ity expression to describe a particle’s linear position with respect to an observer 
along the path of that same vector. The latter is the required description of the 
relation with respect to the uncertainty principle. Thus, such that 2Lr Mn n=  
from Equation (16), we make the substitution into Equation (18) and 

( )2 2 1M Mn n = ,                       (19) 

2 1
4Mn = ,                          (20) 

1
2Mn = .                          (21) 

The count value describes the lower count bound to the measure of mass with 
respect to an observer. This does not mean that phenomena may not have 
smaller masses, only that a mass less than mf/2 may not be measured with a 
greater precision. Notably, what is meant by direct measure is difficult and best 
understood by returning to the uncertainty principle for a precise definition. 
Returning to Equation (10) 2 Lr M L Tn n n n=  such that nM = 1/2, moving nL to the 
right and reducing with Equation (1) L Tn n= , then 

12
2Lr L Tn n n= ,                        (22) 

1T
Lr

L

nn
n

= = ,                        (23) 

Finally, where both nL and nLr describe the phenomenon of length and Equa-
tion (1) L Tn n= , then 

1Lr L Tn n n= = = .                      (24) 

We conclude with this analysis that each of the counts is physically significant 
describing the boundary between certainty and uncertainty. 

O1: There are physically significant fundamental units of measure: length, mass 
and time. 

Notably, the mathematical approach taken makes no assumptions about the 
relations between the measures, the discreteness of measure or the physical sig-
nificance of measure. Our ability to correlate a physically significant phenome-
non with discrete counts of reference measures is entirely an outcome of our ex-
isting understanding of light, the uncertainty principle and escape velocity. 

2.3. Discreteness of Measure 

In the preceding section, we demonstrate that there is a lower count bound to 
measure. Consider now the physical significance of macroscopic measure (i.e. 
distance greater than the reference lp). Imagine a stick 10.00lp in length and 
another 10.25lp in length. Can the difference be measured? 

10.25 10.00 0.25p p pl l l− = .                   (25) 
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No. A difference length is physically indistinguishable from any other length 
and with respect to the Heisenberg uncertainty principle, a distance less than the 
reference lp (i.e. nL = 1) cannot be measured. The demonstration constrains all 
macroscopic length measure to a whole-unit count of the reference measure. 

While the above leaves no additional opportunity for non-discrete measure, 
consider one more approach, a difference greater than lp such that one stick is 
10.00lp and the other is 15.25lp. 

15.25 10.00 5.25p p pl l l− = .                   (26) 

The difference measure is physically significant, but the argument that this 
measure is also non-discrete is valid only if different from a whole-unit count, 
that is five units of the reference. To test this prediction, we again compare the 
two targets, 

5.25 5.00 0.25p p pl l l− = .                    (27) 

We find this case no different than the first. All measure is physically signifi-
cant only where a whole-unit count of the reference. To summarize: 

O2: The fundamental measures are discrete and countable. 
O3: The fundamental measures each define a reference. 

2.4. Measurement Frames of Reference 

The prior observations establish a physically significant correlation between dis-
crete measure and a reference. Consider now that the universe expands at the 
speed of light such that an observer within the universe has no access to infor-
mation external to the universe. That is to say that there can be no external ref-
erence to the universe with respect to an observer within the universe. An expe-
riment by Page and Wootters that supports a mechanism of “static” time was 
carried out demonstrating that time is a feature of the internal universe. This is 
demonstrated using the quantum entanglement of photons where it was shown 
that time is an emergent property deriving from quantum correlations [4]. 

In consideration of observations O1 - O3 and the Page and Wootters result, we 
find support for the conjecture. Without a reference external to the universe, 
phenomena defined with respect to the universe are non-discrete. And as such, 
resolving a measurement difference between internal and external frames of ref-
erence will identify a physically significant result. 

O4: Measure with respect to the observer is discrete. 
O5: Measure with respect to the universe is non-discrete. 
To test this prediction, consider first how we should describe the frame of an 

observer, a target and the universe in a single expression. The approach must al-
low for a perspective such that each of three measures is relatively known to the 
observer. And the approach must preserve the discrete reference measures. 

As before, we propose that measure should be taken as a count of the refer-
ence. Just as one might use feet, meters, parsecs or light-years, we proceed with 
“units”, units being defined as counts of the reference measures. Notably, we 
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have not resolved the reference measures, but we will do so later. The exact val-
ues are not needed at this time. 

Finally, we entertain the traditional approach to an unknown distance. As 
drawn in Figure 1 where our observer is at A and the target is at C, the unknown 
distance count BC  may be resolved with the reference count AB , a discrete 
count of the reference count AC  and an angle, each measure count resolved 
from the inertial frame of A. Thus 

2 2
2 cosBC AB AC ABAC θ= + − .               (28) 

Although the approach can resolve each measure relative to the observer there 
are challenges. With the introduction of theta, we must address what a discrete 
length implies with respect to angular measure. That is to say, is an angular meas-
ure also discrete? We also find BC  unconstrained where our goal is to narrow, 
not broaden, our understanding of the non-discrete segment. 

As an alternative, consider now the case of an infinite grid of points all exactly 
one reference length apart with respect to their closest neighbors. At each point, 
an observer can use a laser pulse rangefinder and the time-of-flight principle to 
ascertain that they are at a distance of one lp, hypothetically, from every other 
point, except those diagonal points which are calculated with the Pythagorean 
Theorem to be at a distance greater than the reference. In this example we also 
ascertain a right-angle design removing the need for an explicit measure of theta. 
And finally we change the location of the observer such that the observer, the 
target and the uncertain distance count all lie on a line representing the uncer-
tain distance in the third frame of reference. 

The example as drawn in Figure 2 demonstrates three distinct frames of  
 

 

Figure 1. Count of distance measures along segment BC . 
 

 

Figure 2. Count of distance measures along segment AC . 
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reference, the two discrete frames of A and C of which A certifies the length of 
AB  and C certifies the length of BC , and the third frame (the universe), of 

which both A and C and the unknown length AC  are members. Using the Py-
thagorean Theorem, then 1.414 pAC l≈ . Such that only a discrete measure of 
AC  is permitted, we then find the difference 1.414 − 1.000 = 0.414 lp to describe 

a physically significant property of the universe. How this difference manifests 
between the distinct frames of A and C and the non-distinct frame AC  of the 
universe is the subject of the section to follow. 

3. Results 

Using the principles discussed above we will now resolve a physical description 
of the difference between the discrete frame of the observer and the non-discrete 
frame of the universe. And with respect to both frames, we describe a common 
target. 

3.1. Distance 

To distinguish the approach from that of Planck, the fundamental units of 
measure derived will be identified with the subscript f, lf for length, mf for mass 
and tf for time. It is not necessary to resolve specific values yet. But, as the 
approach differs from that of Planck, it is important to distinguish between the 
measures. 

Figure 3 describes the reference frames outlined in the prior section such that 
the long side c of a right-angle triangle may be resolved using the Pythagorean 
Theorem where side a is always the reference count 1 and side b is some known 
count of that reference. 

Notice that a count of 1 on side a is prerequisite to any definition of unknown 
factors. If an argument was presented that side a was arbitrary (i.e. a = 2), we 
would find a description that “assumes” a reference count of two 1’s not expli-
citly incorporated into the definition. This presents a factor representation of the 
framework that conceals the discrete count properties we are attempting to un-
derstand. Thus, side a = 1 is prerequisite for all considerations of side b in any 
understanding of the unknown distance on side c. 

( )1 221 Lbc n= + .                       (29) 

 

 

Figure 3. Count of distance measures between an observer and target. 
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For the purposes of this approach, it is conjectured that any non-integer count 
relates to a change in distance and may be described by rounding up (repulsion) 
or down (attraction). The remainder lost to rounding will be denoted by QL. For 
all solutions, QL is less than half and thus attractive as is evidenced by QL’s larg-
est value of 0.414 where sides a and b are both 1. The model provides a count of 
distance measures that is closer by 

( )1 221L Lb LbQ n n= + −
                     

(30) 

at every instant in time tf. For example, if nLb = 4, then  

( )17 4 4 0.1231 4L LbQ n = − = . Because side c always rounds down, we find 
that nLr always equals nLb. Thus, we shall always refer to the ‘observed measure 
count’ as nLr. Moreover, note that the reference measure against which all counts 
are measured is defined by nLa = 1. With this, we have composed an expression 
for gravity such that the loss of the remainder relative to the whole-unit count is 
QL/nLr. 

Together QL and nLr are conjectured to represent an important dimensionless 
ratio that describes gravity. We proceed with that hypothesis by presenting the 
ratio in meters per second squared (ms−2), where we multiply by lf for meters 
and divide by 2

ft  together describing the distance loss at the maximum sam-
pling rate of one sampling every tf seconds per second, 

2
L f

Lr f

Q l
n t

.                           (31) 

Note also that the quantity is scaled and hence requires a scaling constant; we 
multiply by the speed of light c and divide by a scaling constant S. Setting r = 
nLrlf and c = lf/tf, the expression reduces to 

22 3

2
L f L fL L

Lr f Lr f fLr f

Q l Q l cQ c Q cc
S n t S n l t S rSn t
= = = .              (32) 

3

2
LQ c G
rS r

≈ .                         (33) 

Notably, in Section III.D we will use Equation (13) G = c3tf/mf to demonstrate 
the relation between Equation (32) and G directly through substitution. For now, 
we now have a description of gravitational curvature accurate with quantum 
precision for the entire physical domain. 

We identify this presentation as the Informativity approach—a term that de-
scribes the application of measurement quantization to the description of phe-
nomena. This understanding of gravity arises as a difference between the dis-
crete measure of an inertial frame and the non-discrete measure with respect to 
the universe. Comparing the expression with Newton’s expression G/r2 we see a 
decrease in distance between the two curves (see Table 1) that quickly becomes 
immeasurable. The difference is a function of QLnLr, a term that approaches 1/2 
with increasing distance as described in Appendix A. 

But, before proceeding, let us take a closer look at the scalar constant S. 
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Table 1. Informativity difference from G/r2. 

 
50lf 100lf 300lf 500lf 1000lf 2247lf 

Difference 0.00100% 0.00250% 0.00028% 0.00010% 0.00003% 0.00000% 

3.2. Scalar Constant S 

We may interpret S as momentum; hence the units for the expressions above 
will match accordingly. We may also interpret S as a radian measure. Let us con-
sider both interpretations and the physical significance of each. To begin, we use 
Planck’s expression for length to present one example of the relation between 
these two interpretations. 

3

p
p

cl
G l

=
 .                         (34) 

On the left, we have momentum. On the right, we have a description of 
Planck’s reduced constant with respect to length. While Planck’s constant h car-
ries the units joules seconds, Planck’s reduced constant ħ = h/2π carries the units 
joules seconds per radian. The units for ħ/lp are collectively recognized as angu-
lar momentum or more accurately the numerical value of momentum per ra-
dian. 

By comparison, Equation (33) takes the same form. Solving first for S, then 
substituting r = nLrlf and considering macroscopic distances where  

( ) 2lim 1
Lrn L Lrf Q n→∞ =  (Appendix A), then 

3 33 1
2 2

L Lr f fL

p

Q n l c l cQ rcS
G G G l

= =≈ =
 .              (35) 

And as such, S describes momentum just as much as it describes angular mo-
mentum, equal in magnitude but with respect to different dimensions. Is it al-
ways appropriate to consider one application? Do these different points of view 
vary with respect to different frames of reference? 

Before beginning, note also that the term QLnLr, referred to as the Informativ-
ity differential, plays a key role in describing how fractional values less than the 
theoretical limit describe a distorting effect in measurement. Consideration of 
the Informativity differential at a limit is a matter of convenience, but to main-
tain a precise expression, values for QL and nLr should always be entered specifi-
cally to the phenomenon being observed. The values determined cover the entire 
physical domain from one lf to infinity. 

Continuing our investigation of momentum, consider also this definition of 
mass. Multiply the left and right terms from the expression above by tf and re-
duce, 

3 2
f f f

f

c S Sm t t
G l c

2
= = = .                   (36) 

Then the momentum is 
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22
fm c c SS

c
ρ  = = = 

                      
(37) 

and may also be written as 

2 f f
f

f

m l
S m c

t
= = .                      (38) 

In passing, we have also confirmed our prior understanding of the minimum 
count value for mf as resolved in Equation (21). In reference to Equation (38) 
such that mflf/tf describes the smallest units of length and time and such that c = 
nLlf/nTtf constrains nL = nT = 1, then nM must equal one-half. 

With this, we now investigate the angular properties of S. If we are to agree 
with the momentum interpretation as applied to Equation (35) c3/G = 2S/lf, then 
the dimensional substitution S = ħ/2lf from Planck’s length expression Equation 
(2) lfc3/G = ħ/lf must also be valid. As described in Figure 4, then the arc length 
of a circle of radius lf and angle S conforms to a radian measure. 

2 2f
f

L rS l
l

rθ
 

= = =  
 

=
 

.                  (39) 

To clarify, such that rθ meters radians describes the arc-length corresponding 
to a given radian measure and ħ/2 (kg∙m2∙θ−1∙s−1) describes a momentum per ra-
dian, then S describes the magnitude of the angle in radians corresponding to 
the momentum of a quanta of energy. Writing down the corresponding units, 
cancelling out meters and moving θ to the left we find that 

2kgmm
s

θ
θ

= ,                        (40) 

2 kgm
s

θ = .                         (41) 

Notably, there is an argument with respect to the frame of the universe that 
the units for rθ are an arc-length per radian unit. In that case, θ cancels out and 
we recognize kg∙m∙s−1 as a unity expression equal to 1, a dimensionless magni-
tude having no units. 

 

 

Figure 4. Arc length of a circle of radius fl  and subtending angle Sθ =  radians.  
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Alternatively, with respect to the inertial frame of the observer, the right-most 
term identifies the momentum interpretation from Equation (38) while the 
left-most term identifies an angular measure, neither being dominate. We rec-
ognize then, 

O6: The scalar constant S has units of kg∙m∙s−1, radians or no units at all de-
pending on the frame of reference. 

Naturally, the expression lfS = ħ/2 is a numerical equality, so how can we test 
the dimensional validity of the angular approach to measure? 

When working with the fundamental units of any expression dimensional va-
lidity may be resolved by replacing each dimension with the value of the corres-
ponding fundamental measure. Such that there are mf kilograms, lf meters, tf 
seconds and 2S radians where 2S = θ2 dimensionally then the conjecture that 
2S = ħ/lf = mflf/tf is dimensionally valid is true only if 

2 f f

f

m l
t

θ = ,                         (42) 

35 8

44

1.616199 10 2.17647 12 3. 0
5.39

2
1 0

2
06 1

6 39
− −

−

×
×

=
× ×

× ,           (43) 

6.525 6.525=  radians.                    (44) 

By example only, using Planck Unit values from the 2014 CODATA [5], we 
confirm that the magnitude of θ is equivalent to that of momentum. Such that S 
describes half the momentum of a fundamental unit of mass, then 2 (1/2) = 12 is 
the only solution that can describe the dimensional equality of the fundamental 
units at unity. The test also confirms that θ must be a discrete value with respect 
to each of the fundamental measures. Unlike the measures of length, mass and 
time, this does not mean that θ is a measurement bound for all distance count 
nLr, only that it is a lower bound with respect to nLr = 1. 

Moreover, note that we are using the estimated 2014 Planck Unit values [5] 
which are sufficiently accurate for this demonstration. Later, we will resolve the 
fundamental unit values taking into account the effects of the Informativity dif-
ferential. Those values are accurate to six significant digits and can be applied to 
any physical description to demonstrate dimensional homogeneity. 

One might also inquire why this principle works. It is a mathematical out-
come of the relation between each of the fundamental units of measure. When 
viewed from a more general perspective, the principle is no different than as-
signing each measure a random value. So long as the units are dimensionally 
equivalent and the expression balanced following assignment, then the expres-
sion will remain equal, regardless of the mathematical operations performed. 

The question of initial dimensional equivalence is ensured by a second prin-
ciple. Given a system of measurement, using the measured values for each fun-
damental unit validates the appropriateness and physical significance of each 
dimensional assignment. Any assignment that is inaccurate to a precision less 
than the remaining measures reduces the count of significant digits for all terms. 
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Thus, to resolve the physical significance of a dimension at least all dimensions 
but one must be measured with a quantifiable physical significance. Then the 
significance of the remaining dimension must be equal or better than the most 
significant digit of the known physical measures. The above test tells us that the 
equivalence in the magnitude of radian measure and momentum is known to be 
physically significant to at least 4 significant digits and as previously noted, this 
can be shown to be significant to 6 digits when using the fundamental measure 
of each dimension. 

One final note is of particular interest. In modern theory, we have associated 
Planck’s reduced constant ħ with the momentum of a phenomenon per 2π ≈ 
6.283 radians. In our analysis, we have resolved ħ with the momentum of a phe-
nomenon per 2S ≈ 6.525 radians. The 2S interpretation corresponds to gravita-
tional curvature, accurate with quantum precision throughout the entire physi-
cal domain. The two approaches agree on the value of h, but disagree on the best 
suited frame of reference for describing a “quantum of action”. Forcing both re-
sults to a common frame produces evident discrepancies. 

For instance, if we favor the modern interpretation (that a quantum of action 
strictly corresponds to 2π radians), then we cannot agree that the momentum 
and angular measure expressions are mathematically equivalent. That is to say, 
such that the momentum S = lfc3/2G from Equation (35) and the angular meas-
ure S = ħ/2lf from Equation (39) each share the scalar constant S, then their di-
mensional equality 

1 2

3f
Gl

c
 =  
 



                         
(45) 

must be wrong. But this is Planck’s universally recognized formulation for length. 
And if this relation is askew, then all Planck Unit expressions are askew (not 
h/2S, rather h/2π). 

The issue is resolved only when we consider that two frames of reference are 
being considered. If one measures a ‘quantum of action’ equal to one full cycle 
2π, then the proper expression is ħ = h/2π. But, if one measures a “quantum of 
action” with respect to the frame of reference of the universe, then ħf = h/2S is of 
the proper magnitude. The difference varies as a function of the Informativity 
differential. To appropriately distinguish these two considerations, we distin-
guish the latter bound from Planck’s reduced constant by appending the sub-
script f (i.e. ħf), identifying the measure as Planck’s fundamental constant. Spe-
cific physical examples where ħf applies will be discussed later in the paper. 

3.3. Measurement of S 

We will now consider an experiment where S can be measured macroscopically 
with an optical parametric oscillator. That is, the properties of a pump beam 
may be controlled such that both the signal and idler demonstrate the unity state 
described above. And with each measure representing a count of one of the fun-
damental measures, S is then a measure of the k vector angle of each of the split 
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beams with respect to the atomic plane. Notably, when set up as described by 
Shwartz and Harris [6], solutions exist such that the signal is polarized in the 
scattering plane, the idler normal to the scattering plane and each a function of 
the current density of the pump. 

Using polarization entangled X-Rays in pure Bell states, Shwartz and Harris 
take advantage of the intersections of the component curve (as a function of the 
square of the current density) to resolve the pump angle θp where the magni-
tudes of the components of each Bell state are equal. With this, solutions to the 
phase matching and current density equations are resolved to determine the sign 
of the components at the intersection. Then solving the phase matching equa-
tions for the signal and idler vectors with respect to the atomic plane, substitut-
ing the related electric fields, the current density is resolved entirely as a function 
of the pump. 

We should note that the Shwartz and Harris calculations are dependent on 
electron charge and mass, collectively which provide a description of the elec-
tron density in the absence of the pumping beam. Naturally, one would need to 
correlate the gravitational expressions of Informativity with that of electromag-
netism in order to carry out the same approach. This is possible with this de-
scription of the fine structure constant (FSC) 

0

31 7.29710 10f f

e M Ln n
l m
a m

α −= = = ×
               

(46) 

and our existing understanding of gravity 

0 0

f

f

l
G

m ε µ
= ,                        (47) 

3

0 0

L Lr f f

f

Q n l c
S

l
m ε µ

= ,                     (48) 

0 0
32 fS m cε µ= .                       (49) 

The FSC is the inverse count product of the Bohr radius and the electron mass, 
resolved by dividing the Bohr radius by the fundamental length nL = a0/lf and the 
electron mass by the fundamental mass nM = me/mf. Likewise, the momentum of 
a fundamental unit of mass 2S (i.e. the k vector angle with respect to the polari-
zation of the split beams and the scattering plane) is the product of that mass mf 
by the electromagnetic constants ε0u0 in three dimensions c3 in the same manner 
as described by the gravitational constant G = (tf/mf)c3. 

Fortunately, Informativity offers an alternate solution to describe a maximally 
entangled Bell state with respect to a lattice vector G . That is, we recognize as 
discussed by Shwartz and Harris that this occurs where one vector describes the 
polarization of the electric field in the scattering plane that the other describes 
the polarization orthogonal to the scattering plane. Thus, we only need to divide 
the magnitude of the pump vector coordinate components such that they are 
opposite in sign. Respectively, the x and y components are then the arccosine 
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and arcsine of the lattice vector such that (−npxcos(θ),npysin(θ)). The pump, sig-
nal and idler vector magnitudes n (a function of the pump frequency or the 
phase matching properties of the nonlinear optical crystal) are identified with 
the subscripts p, s and i followed by an x or y representing the coordinate axis. 

arccos x

sx ix px

G
n n n

θ
 
  + − 

= ,                  (50) 

arcsin y

iy iy py

G
n n n

θ
 
  + + 

= .                  (51) 

Placing these values in vector form and breaking out the component vectors, 
then 

( )( ) ( )( )( )cos sin,sx ix px iy iy pyn n n n n nθ θ+ − + + = G ,        (52) 

( ) ( ) ( ) ( ) ( ) ( )( )cos cos cos sin sin sin,sx ix px iy iy pyn n n n n nθ θ θ θ θ θ+ − + + = G ,   (53) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )cos , sin cos , sin cos , sinsx sy ix iy px pyn n n n n nθ θ θ θ θ θ+ − − = G , (54) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )cos , sin cos , sin cos , sinsx sy ix iy px pyn n n n n nθ θ θ θ θ θ+ − − = G . (55) 

Moving the pump coordinate to the right alongside of the lattice vector, tak-
ing the angular difference of the y-component to make the sine positive and 
matching that form in the x-component, then 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

cos , sin cos , sin

cos ,2π s 2in π

sx sy ix iy

px py

n n n n

n n

θ θ θ θ

θ θ

+

= − − +G
.          (56) 

We find that θs = θi and that the pump angle is θp = 2π − θ. Moreover, such 
that the pump is split evenly, then the momentum of the beam is divided. As 
described in Equations ((37), (38)) we divide the momentum to match. Thus, 
when the angles of the k vectors with respect to the atomic plane are equal to 
half the momentum of the entangled photons (i.e. S), then 

3 1
2 2
f f

f
f

l c l
S m

G t
 

= =   
 

.                     (57) 

Thus, the respective angles at maximal entanglement θMax associated with the 
signal and idler follow Equation (56) as described in line 2 of Table 2. An addi-
tional solution (line 1) may be resolved by subtracting each angle from π, (i.e. π − 
θp, π − θs, π − θi). 

In Shwartz and Harris’s 2011 paper, “Polarization Entangled Photons at  
 

Table 2. Predicted radian measures of the k vectors of the pump, signal and idler for the 
maximally entangled state at the degenerate frequency of X-Rays. 

 
θp θs θi 

π − θMax (lfc3/2G) − π (0.1208) π − (lfc3/2G) (−0.1208) π − (lfc3/2G) (−0.1208) 

θMax 2π − (lfc3/2G) (3.02079) (lfc3/2G) (3.26239) (lfc3/2G) (3.26239) 
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X-Ray Energies” [6], they resolve a total of five cases representing two Bell states 
that can generate entangled photons. Using their nomenclature, the states are 
defined such that H  is the polarization of the electric field of the X-ray in the 
scattering plane and V  is the polarization orthogonal to the scattering plane 
which contains the incident k vector and the lattice k vector G . 

The Shwartz and Harris measure precisely match the Informativity calcula-
tions (Table 3) confirming the predictions described by Informativity to six sig-
nificant digits, which is the extent of precision allowed by G. Moreover, the error 
in angular measure for the Shwartz and Harris results is estimated to be less than 
2 micro-radians. 

Of particular interest are the component terms that define the scalar constant 
S = lfc3/2G: the Planck length lp, the speed of light c and the gravitational con-
stant G. Using the 2014 CODATA [5] values for guidance, then 

35

1

33

1

1.616199 10 299792458 3.26239
2 2 6.67408 1

radia s
0

nfl c
S

G −

−

= = =
× ×

× ×
.     (58) 

The role of fundamental measures to this point is a mathematical construct, a 
proposed interpretation of the existing argument. The measures exist only in 
their expression until formally resolved in the next section. Whereas CODATA 
estimates may be used to guide our understanding of S, up to this point no 
theoretical values are assumed. Our confidence in correlating S to θsi rests in the 
correctness of the two interpretations of S, their correlation which accounts for 
Planck’s length expression, the resulting measurement predictions and the col-
laborating results presented by Shwartz and Harris. 

3.4. Discrete Measures 

In modern theory, we quantify the relation between length and time with respect 
to the speed of light c = l/t. But mass stands alone, without a specific phenome-
non correlating mass to length or time. To resolve all three of the fundamental 
measures will require a correlation. Starting with the geometric approach presented 
in Section III. A QLc3/rθsi and its correlation to the gravitational constant G Equa-
tion (33), then removing the Informativity differential ( ) 2lim 1

Lrn L Lrf Q n→∞ =  
(Appendix A)—a physically significant equivalent for any macroscopic dis-
tance—it follows that 

( )
3 33 3

2

2si s

f fL L
Lr f L

i s si
L r

i

l c l cQ c Q cG r n l Q n
rθ θ θ θ

= =≈ = .          (59) 

And, such that G = c3tf/mf from Equation (13), then 
 

Table 3. Angle setting in radians of the k vectors of the pump, signal and idler for max-
imally entangled states at the degenerate frequency (Ref. [6]). 

Bell’s State θp θs θi 

( ), , 2s i s iH V V H+  0.1208 −0.1208 −0.1208 

 
3.02079 3.26239 3.26239 
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3 3

2
f f

f si

t c l c
m θ

≈ ,                        (60) 

2 sif f fl m tθ≈ .                       (61) 

We call this the fundamental expression. 
Although a macroscopic expression for fundamental length may be resolved 

directly from Equation (33), we will start with the initial geometric formulation 
finalized in Equation (32) and our understanding of G = c3tf/mf Equation (13) to 
directly correlate gravity through substitution. This can help significantly reduce 
the number of considerations to this point. Breaking down the expression, applying 
the macroscopic case for the Informativity differential ( ) 2lim 1

Lrn L Lrf Q n→∞ = , 
we resolve fundamental length. 

33 3
f fL L L

si Lr f si Lr f si f f

c t mQ c Q c Q
r n l n l m tθ θ θ

= = ,               (62) 

3
fL L

si Lr f si f

mQ c Q G
r n l tθ θ

= ,                    (63) 

3
fsi L

f
Lr si fL

mr Ql G
n tQ c

θ
θ

= ,                    (64) 

3 2
Lr f si f fL

f
Lr si fL

n l m mQl G G
n tQ c c

θ
θ

= = ,               (65) 

2 3

2 21 f
f

si si

f

t G
l G

lc c
θ θ

= = .                   (66) 

Then, for all macroscopic distances, the fundamental units are 
11

35
3 3

2 2 6.67408 10 3.26239 1.61620 10 m
299792458

si
f

G
l

c
θ −

−× × ×
== = × ,     (67) 

11
44

4 4

2 2 6.67408 10 3.26239 5.39106 10 s
299792458

f si
f

l G
t

c c
θ −

−× ×
= = ×=

×
= ,   (68) 

3
82 2 3.26239 2.17643 10 kg

299792458
si

f f
cm t

c G
θ −×

= = ×= = .        (69) 

Notably, when we say macroscopic, we mean any distance greater than 2247 lf 
as described in Table 1. For any distance greater than this, the geometric skew 
due to the Informativity differential is a value less than 0.5 of the sixth digit of 
physical significance. To resolve a form of this expression accurate with greater 
precision, the fundamental length may be written as 

3
3 3

f si fsi si
f

f L Lr fL Lr L Lr

t tG
l c

m Q n mQ n c Q n c
θθ θ 

= = =  
 

.           (70) 

The fundamental expression in “expanded form”—the term used when ap-
plying this effect—is written as 

L Lr f f si fQ n l m tθ= .                      (71) 
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As well and in prior publications, we often use the equal sign, as opposed to 
the approximately equal sign when working with the macroscopic form of these 
expressions. This is an acceptable practice so long as one bears in mind that the 
more accurate representation requires consideration of the Informativity diffe-
rential. 

3.5. Physically Significant Discrepancies with ħ 

The conflicts that Planck encountered arose from the missing experimental 
connection to the effects of distance measure on G and ħ. Whereas the measure 
of ħ is a property of quantum interactions, the measure of G is resolved as a 
property of macroscopic phenomena. Mixing the two distance sensitive values in 
a single expression as Planck defines his units leads to incorrect physical predic-
tions. One example includes the calculation of G. To resolve the issue, we solve a 
distance sensitive value for ħ (ħ ≈ 2θsilf, Equation (39)) such that  

( ) 2lim 1
Lrn L Lrf Q n→∞ = , then for any macroscopic set of measures (i.e. G) 

342 1.05454 10 J ssi f
si f

L Lr
f

l
l

Q n
θ

θ −= = ×= ⋅ .             (72) 

Importantly, the value is resolved solely as a function of θsi and lf as derived 
from the initial geometric argument. This significantly reduces dependencies 
placing focus on the physical measurement of θsi and the measure of light c = l/t 
which may now be approached as a count property of the Heisenberg uncer-
tainty principle. The most notable discrepancies—length and time—with respect 
to the 2014 CODATA (Table 4) in comparison to Planck’s Unit expressions 
Equations ((2), (3)) are now reduced to the last significant digit. 

Notably, there is a very small rounding effect taking place in length that is 
then amplified in the mass. Half the difference between the ħf calculation and the 
CODATA length value is 0.0000006 × 10−35 m. Had this difference been just be-
low 0.0000005 × 10−35 m the rounding would have matched the CODATA pre-
cisely. But, in neither case is the seventh digit physically significant and as such 
should not be considered. Given that mf = 2θsitf/lf, the difference in the mass 
from the CODATA is then an amplification of the rounding in the length, pre-
cisely. 

With a distance sensitive measure for Planck’s reduced constant adjusted for 
the Informativity differential, we may now describe in Table 5 the predicted ra-
dian measures presented in Table 2 as a function of ħf. 

 
Table 4. Planck’s expressions calculated with quantum ħ and macroscopic ħf values for 
Planck’s constant. 

Informativity Differential θ (radians) Length (m) Mass (kg) Time (s) 

Planck’s Reduced Constant ħ 3.26250 1.616228 × 10−35 2.17647 × 10−8 5.39116 × 10−44 

Planck’s Fundamental Constant ħf 3.26239 1.616200 × 10−35 2.17643 × 10−8 5.39106 × 10−44 

2014 CODATA Estimates [5] 
 

1.616199 × 10−35 2.17647 × 10−8 5.39106 × 10−44 
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Table 5. Predicted radian measures of the k vectors of the pump, signal and idler for the 
maximally entangled state at the degenerate frequency of X-Rays using Planck’s funda-
mental constant ħf. 

 
θp θs θi 

π − θMax (ħf/2lf) − π (0.1208) π − (ħf/2lf) (−0.1208) π − (ħf/2lf) (−0.1208) 

θMax 2π − (ħf/2lf) (3.02079) (ħf/2lf) (3.26239) (ħf/2lf) (3.26239) 

 
For a more in-depth understanding of the effects of the Informativity diffe-

rential on G and ħ, we present the following relation which shows their correla-
tion. Starting with the fundamental expression and Equation (39) ħ ≈ 2θsilf, then 

2 si f fft mlθ ≈ ,                        (73) 

( )2 24 i fsi f s ft mlθ θ≈ ,                     (74) 

24 si f ft mθ ≈  ,                        (75) 

3 2 34 f
si

f

t
c c

m
θ

 
 


≈


 ,                     (76) 

2 34 siG cθ ≈  .                        (77) 

Notably, moving terms to the left to match the expression for fundamental 
length, we find Planck’s terms appear on the right matching the expression for 
Planck’s length. Where Planck’s expressions have no specific correlation to 
physical measure, the Informativity expression is correlated to gravitational 
curvature to the sixth significant digit as demonstrated with the combination of 
Equation (13) G = c3tf/mf with Equation (32) QLrc3/rθsi which demonstrates that 
G = c3lf/2θsi Equations (62)-(66). Thus, 

2

3

4 siG
c
θ

≈  ,                         (78) 

2 2

6 3

4 siG
c c

Gθ
≈
 ,                        (79) 

1 2

3 3

2 siG
c c

Gθ  
 
 

≈
 .                      (80) 

The challenge Planck encountered was a quantum variation (an observational 
skew) in G and ħ equal in magnitude that are related as described in Equation 
(77). Without expressions and experimental data describing the variation, he 
lacked a foundation with which to resolve a distance sensitive understanding of 
ħf macroscopically. Where (ħG/c3)1/2 = 1.61623 × 10−35 m, using the Planck fun-
damental constant ħf, the above expression is now mathematically equivalent 

1 211 34 11

3 3

2 6.67408 10 3.26239 1.05454 10 6.67408 10
299792458 299792458

− − − × × × × × ×
 
 

≈ ,  (81) 

35 351.61620 10 1.61620 10− −≈× × .                (82) 

Moreover, the physical conflict with experimental result is resolved. As origi-
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nally described in Equation (39) θsi = ħ/2lf = 3.26250 radians, accounting for 
the Informativity differential solves the discrepancy with respect to the Shwartz 
and Harris results. 

34

35

1.05454 10 3.26239
2 2 1.616199 10

radianssi
f

f

l
θ

−

−

×
= = =

× ×



.         (83) 

The dimensional homogeneity problem is solved as expressed in Equations 
(42)-(44). Presenting each of the fundamental measures as described by the fun-
damental expression, 2θsi = lfmf/tf, we now find the expression mathematically 
equal and in correspondence with the 2014 CODATA measurements [5], 

35 8

44

1.616200 10 2.172 1 3.26 643 10
5.39106

2
10

39
− −

−

× × ×
× × =

×
,         (84) 

6.52548 6.52 rad5 8 s4 ian= .                  (85) 

The same follows from G when resolved as a measure of the quantum value ħ. 
Using the 2014 CODATA for Planck’s length lp and ħ in Planck’s expression for 
length 3 2 116.67385 10pG c l −= = ×  in comparison with the distance sensitive 
measure of ħf, then 

( )2

11
3

3 3
3

53 2
2

4
16.67408 10

1.05454 10

299792458 1.616200 1
m kg

0
s

f

fc l
G − −−

−

−

= = = ⋅
×

× ⋅
×

×

. (86) 

The Informativity approach conforms to the measurement data (i.e. 6.67408 × 
10−11 m3∙kg−1∙s−2) [5] while use of the Planck reduced constant ħ demonstrates a 
physically significant discrepancy of 0.00023 × 10−11 m3∙kg−1∙s−2. 

Moreover, the Informativity approach allows calculation of G entirely as a 
function of lf, the one-to-one relation of lf to tf (i.e. lf = tfc) and θsi. 

21L Lc Lb Lb LbQ n n n n= − = + − ,                 (87) 

( ) 34 36234 6.18735 101 6.187 8.3 05 1 8100 100LQ −= + × − × = × ,     (88) 

3 36 3
1 218.08100 10 299792458 6.67408 10

1
m kg s

3.26239
LQ c
rS

−
−× ×

= = ×
×

⋅ .    (89) 

And finally, returning to the long-running discrepancy between the Planck 
expression for the FSC 3

0 7.29710 10f f el m a mα −= = ×  and its 2014 CODATA 
measure 7.29735 × 10−3, we incorporate the Informativity differential at a dis-
tance respective of the measure of Planck’s reduced constant (Appendix B) [[1], 
see Equation (34)]. 

( )
1 84.85536
2Lf si f

si f

r l
l

θ
θ

=
−

=
 

.              (90) 

The value identifies the equivalent count of lf that corresponds to the birth of a 
photon. Then, expanding the Planck expression for the FSC using the funda-
mental expression lfmf = θsitf/QLnLr, the distance sensitive value is resolved. 
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0

3

0

7.29735 01 1f f si f

e e L Lr

l m t
a m a m Q n

θ
α −= ×= = .             (91) 

The result is a precise match to the 2014 CODATA value. 
The strict mathematical constraints of this relation draw immediate attention 

to the many physically significant discrepancies that arise with the introduction 
of Planck’s reduced constant unadjusted for the measurement skewing effects 
described by the Informativity differential. 

3.6. Direct Measurement of the Informativity Differential 

The Informativity differential describes a skewing effect in our understanding of 
distance. The effect is very small, but a measure of this effect is just now becom-
ing possible with new data expected from the GAIA mission [7]. Measured with 
respect to Einstein’s calculation of the effects of relativity on light passing through 
a gravitational field, γ is the difference from that calculation. The most cited and 
currently most accurate measure of γ is (21 ± 23) × 10−6 [8] with respect to 
measurements made of transmissions from the Cassini spacecraft. With Infor-
mativity we may calculate the results of γ which will show a value equal to the 
Informativity differential. 

We use the expressions for the deflection of light grazing our Sun to resolve γ 
as a difference from Einstein’s expressions. With θ the angle of deflection, r and 
M☉ the radius and mass of our sun, G the gravitational constant, and c the speed 
of light, then 

6
2 2 2

4 4
radians8.5 10

GM rMG
rc r c

θ −= = = ×☉ ☉ .            (92) 

Taking the difference between G/r2 and the Informativity expression QLfc3/rθsi 
we may resolve the radian difference between GR and Informativity, 

( )33
12

2 2 2

44 6.6 radian0 s1si LfLf

si si

M G Q rcQ cG rM
rr c rc

θ
θ

θ θ
−

− 
∆ = − = = ×  

 
.   (93) 

The effect resolves to six orders in magnitude less than the effects of GR or 
γ = 0.78 × 10−6. While the GAIA mission will certainly offer enticing data with 
respect to our understanding of γ, a definitive result will need to await a mission 
with one order increase in precision. 

4. Discussion 

Organizing the fundamental expression such that c = lf/tf = 2θsi/mf allows us to 
state that any change in the count of discrete units of length must equal the same 
in a count of discrete units of time for any description of light in a system de-
fined relatively. The relative nature of discrete behavior is crucial because as 
noted earlier, measure is a function of references in the local inertial frame with 
respect to a target. But, what if the observed phenomenon is a combination of 
the effects of relative measure on top of characteristics a function of and with 
respect to the universe? 
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The question invites again the required understanding as resolved herein, that 
is, our ability to resolve certain properties of the universe, such as its diameter, 
mass and age as observed from outside with respect to an external reference. In 
that the universe expands at the speed of light there is no possibility for a refer-
ence external to the universe to play a part in the observer’s understanding of a 
phenomenon. Moreover, we also recognize that discreteness is a property of ref-
erences. Thus, while matter within the universe may relatively take on discrete 
behavior, relative to the universe behavior must be non-discrete. The two refer-
ence frames express themselves, for one, as a lost difference in distance which we 
observe as gravity. 

Discreteness is not only a function of references with respect to the inertial 
frame. It is a function of the information available. While it may be argued that 
all observers have a precise understanding of the three measures, some informa-
tion may not be available at a given point in space-time. And as such, the miss-
ing information will result in a non-discrete, non-deterministic behavior, for 
example, for any behavior that takes on a measure less than the whole-unit val-
ues in Heisenberg’s reduced particle expression 2nMnLrnL ≥ nT. 

The significance of discrete measure identifies a new behavior essential to our 
understanding of physical interactions. Measure is bounded to whole-unit 
counts of the reference measures and those bounds constrain the physical re-
gime eliminating the conditions that lead to singularities. Collectively lf/tf, mf/tf 
and mf/lf identify those bounds. 
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Appendices 
Appendix A: Numerical Limits to QLnLr 

Throughout the paper, we find the term QLnLr repeatedly. This term is referred 
to as the informativity differential in recognizing the central role it plays in de-
scribing how fractional values less than the theoretical limit reflect a distortion 
effect in distance measurement. Knowing the limits to QLnLr is also essential in 
resolving the fundamental measures. 

The product of QLnLr is Equation (30) multiplied by b. 

( )21L Lr Lr Lr LrQ n n n n= + −
                  

(A1) 

Note, what is measured always equals a whole-unit count of a fundamental 
measure, and with a = 1 we find that b = nLr for all values. This is easily verified 
in that the highest value for QL is obtained for b = 1 where ( )0.521 1 1 0.414+ − =  
and the ‘observed’ distance of c presented as a count nLr is always rounded down 
to the highest integer value equal to the count b with QL = 0.414 at its highest 
and quickly approaching 0 with increasing b. Therefore, 

( )21L Lr Lr Lr LrQ n n n n= + −
                  

(A2) 

The lower limit where nLr = 1 is easily produced, ( )1lim 2 1r L Lrf Q n= = − . 
Conversely, if we divide by nLr, then add nLr, square, subtract 2

Lrn , and divide by 
2, we find that 

2 1
2 2

L
L Lr

Q Q n+ =
                       

(A3) 

QL decreases with increasing nLr until the left term drops out. Distance does 
not need to be significant to reduce the Informativity differential to 0.5. At just 
104lf, QLnLr rounds to 0.5 to nine significant digits. 

Appendix B: Effective Count of lf in the Measure of ħ 

The measure of Planck’s constant requires a physical interaction at a specific rel-
ative distance. That distance may be resolved as a count of lf using Equation (30) 
where nLb equals to nLr and Equation (35) where we have substituted 2

fl  from 
Planck’s relation in Equation (2). We have 

( )1 221Lf Lf LfQ r r= + − ,                    (B1) 

3

2si Lf Lf f Lf Lf f
f

c Q r l Q r l
G l

θ
  

= =        



,               (B2) 

( )( )1 221

si f si f
Lf

Lf Lf Lf

l l
r

Q r r

θ θ
= =

+ −



,                (B3) 

( )1 22 4 2 si f
Lf Lf Lf

l
r r r

θ
+ − =



,                   (B4) 
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2 2 2 2
2 4 2

2
42si f si f si f Lf

Lf Lf Lf Lf

l l l r
r r r r

θ θ θ 
+ = + = + + 

  

,          (B5) 

2

2 2
2 2

1 si f si f
Lf

l l
r

θ θ 
− = 
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,                    (B6) 
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2 2 1
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Lf si f

si f si f
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θ
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θ θ
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