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Abstract 
Unifying quantum and classical physics has proved difficult as their postulates are 
conflicting. Using the notion of counts of the fundamental measures—length, 
mass, and time—a unifying description is resolved. A theoretical framework is 
presented in a set of postulates by which a conversion between expressions 
from quantum and classical physics can be made. Conversions of well-known 
expressions from different areas of physics (quantum physics, gravitation, op-
tics and cosmology) exemplify the approach and mathematical procedures. 
The postulated integer counts of fundamental measures change our under-
standing of length, suggesting that our current understanding of reality is dis-
torted. 
 

Keywords 
Gravity, Gravitational Constant, Planck’s Constant, Planck Units, Hubble’s 
Constant, Momentum, Quantum Uncertainty, Dark Energy, Dark Matter, 
Cosmic Microwave Background 

 

1. Introduction 

On the nature of electromagnetic radiation (ER) and its unique properties in re-
lation to blackbody spectral emissions, Planck’s work introduced the notion of 
quantized energy packets that led to a better understanding of light. He post-
ulated that ER adhered to a strict quantal rule in the absorption and emission 
rules with photon energies given by E = nhv where n is the number of packets, h 
is Planck’s constant, and v is frequency [1]. The constant h was later understood 
as the smallest action that could exist in nature and with it, Planck developed 
expressions for the fundamental units of length, mass, and time: 
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Planck’s formulation is built on a nondimensionalized framework of funda-
mental units of measure and succeeds in revealing important fundamental rela-
tionships, but does not establish a grounded understanding of their significance. 
The values, lp, mp and tp are derived from measures of ħ, G and c. Because the 
values are interpreted to represent a smallest measure, we may infer that they 
can never be directly measured. To do so, it would imply an ability to measure a 
value by means of physical elements that were equal or larger than the target. 
There has been no significant progress addressing this issue since Planck’s initial 
publication. 

In this paper, we will present experimental data that demonstrate the physical 
significance of these measures. The approach departs from modern theory with a 
view that the underlying reference frame adheres to rules which are more dis-
crete than quantum. This opposing perspective, a model based on a background 
independent framework [4] of discrete indivisible units of length, mass and time, 
is what separates this approach. Referred to as Informativity, this model is an 
approach based on the idea that phenomena are described as discrete units, that 
is, integer values of a fixed amount of measure. Observations of light are consi-
dered in geometric terms that may be used to describe gravity, dark energy, visi-
ble and observable mass, inflation, the big bang and the cosmic microwave 
background (CMB) as a whole-unit interpretation of physical phenomena. 

The model parallels modern theory, in design, as it is similar in principle to 
that taken by Albert Einstein. Einstein’s model for special relativity (SR) arises 
from an understanding that the speed of light lp/tp is a physically significant 
bound. This model recognizes that mp/tp is a physically significant bound. 

With the model, we present a fundamental expression that relates length, 
mass and time. For each measure, the expression is at best a composite of the 
other two. Self-referencing measures (i.e. measures defined in terms of other 
measures) provide a framework for developing expressions of observed pheno-
mena. However, when working with dark energy, a difficulty arises in under-
standing phenomena that are properties of the universe. This research recogniz-
es where phenomena “within” the system are understood with respect to the 
self-referencing measurement framework then phenomena that are properties 
“of” the system are understood with respect to a self-defining measurement 
framework. 

We will present expressions for measures defined relative to the system. The 
new framework considers what phenomena look like when the definitions of 
measure are presented as self-defining. Using the invariance of measure with 
respect to a moment in time to constrain this approach, expressions are pre-
sented as a demonstration of the approach, i.e., a quantum expression for gravity, 
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evidentiary support for the physical significance of fundamental units, a demon-
stration of the relationship between Planck’s units and the fundamental units of 
measure, a calculation of Hubble’s constant, the age, size, mass and density of 
the universe, how much matter is visible, observable and what can never be ob-
served. Expressions describing expansion, dark energy and dark matter are also 
presented and explained. 

In the process of resolving an understanding of mass, we also present new ex-
pressions describing the birth of the universe, what starts and stops inflation 
(which we will distinguish from the modern understanding of inflation with the 
term, quantum inflation), what causes the big bang and the underlying mechan-
ics that cause expansion. To validate the approach, among other outcomes, the 
model is used to calculate the age, energy, density and temperature of the CMB 
and present an understanding of the processes that constrain those values. A 
study of CMB measurements confirms the results to four significant digits, our 
best measurement data available. 

In addition to cosmological phenomena, Informativity also allows for the de-
velopment of expressions in quantum physics. For one, using a Bell state model 
presented by Shwartz and Harris [5], expressions are presented that describe the 
presence of a distorting effect at work in the measure of G and ħ. Understanding 
this effect leads to the resolution of contradictions in the evaluation of certain 
expressions and provides a foundation with which to develop expressions that 
describe phenomena both very large and very small. 

2. Methods 

The approach is based on the idea that three fundamental measures may be rela-
tively defined: length, mass, and time. The measures are identified by symbols lf, 
mf, and tf, but at this stage are not assigned values. The subscript f is used to dis-
tinguish the fundamental measures of Informativity from Planck’s units, Equa-
tions (1)-(3). 

Although the values of lf and tf are unspecified, their ratio may be understood 
and constrained by the elapsed time on an atomic clock relative to a distance 
traveled by a pulsed laser beam in vacuo, where c = lf/tf with respect to any iner-
tial frame. It is recognized that this ratio is fixed given the experimental support 
for the invariance of the value of c. Where nLflf = nTftfc, a count of lf, i.e., nLf, will 
equal a count of tf, i.e., nTf. Note that lf or tf may take any value and as such an 
arbitrary value may be chosen such that it is the largest value for which no 
smaller value can be observed. Other physical quantities, in turn, are obtained as 
counts of the fundamental measures. 

The model does not provide a description of mass as a discrete unit of meas-
ure. Hence, the phenomenon of mass will be treated as being either a whole or 
fractional count of mf. Apart from this modified definition for mass, each of the 
measures is taken as relative to a fundamental unit, which is only meant to say 
that they are countable. 
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Note that time has been subtly tied to distance and for that reason our defini-
tion is not only inclusive of the three spatial dimensions but extends to the tem-
poral dimension. Without time, there exists no means to define space. 

We summarize these two statements, which with two others formalize our 
model: 

O1: Quantities exist which are whole-unit counts of the fundamental measures 
lf and tf. 

O2: Mass may be a whole or fractional count of mf. 
O3: Any remainder of a whole-unit calculation of lf or tf describes an action. 
O4: Distances for which the Pythagorean Theorem applies, the shortest side a 

is fixed with a count of one lf, against which counts of lf along sides b and c are 
made. 

An underlying premise of the model is that in O1 and O2 all measures are de-
fined relatively. With a unit system applied, there exists an agreed upon frame-
work by which phenomena may be described by counting fundamental meas-
ures. O3 recognizes the possibility that some expressions may solve for fractional 
counts of fundamental measures. Fractional counts violate the premise by which 
lf and tf are established. Therefore, any expression that describes a change in dis-
tance equal to the remainder of a measure must also describe an action. 

O4 presents a tool, the Pythagorean Theorem, for estimating length. Where 
the measure is relatively defined, the theorem incorporates a reference which 
must be equal to a unit count of one; that is a = 1 unit is the reference. The other 
short side b is any given unit count of distance measures whereas the long side c 
(hypotenuse) is the distance measure of unknown unit count. Each side is a 
count of the reference measure defined by a. This establishes a foundation for a 
background independent framework that acknowledges the need for a reference 
within the definition. The expression 12 + b2 = c2 describes an unknown distance 
c relative to b in terms of a count of a. As desired, solutions to c result in values 
that are fractional leaving us to test the hypothesis that gravity may be described 
as the lost excess over and above the whole-unit count of distance measures. 

While we recognize that the measurement of quantities is limited, this does 
not mean they are not significant. Validating their significance against existing 
data is one goal of the model. Furthermore, although we use the Pythagorean 
Theorem to understand distance, there is no specific argument to suggest that 
another geometric expression would not serve the same purpose. The theorem 
provides insight only so long as it allows the presentation of expressions that 
cannot be reduced by another means. Finally, the term fundamental was chosen 
as a general term with the connotation that a measure has the characteristic of 
being countable and that measurement may be characterized as a count of fun-
damental measures. The term also serves to distinguish the units of measure 
adopted by Informativity from those given in Planck’s base system. 

Note that Planck’s formulations are referenced for context, but are considered 
only as a guide in the development of our model. The model adopts values for 
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the fundamental measures that are resolved entirely within Informativity. 

3. Results 
3.1. Length Measurement and Gravitational Acceleration 

For long side c and short sides a = 1 and b of any chosen integer count of a 
right-angle triangle (Figure 1), we may resolve a count for the length measure 
representing the uncertain distance, 

( )1 221 Lfc b= +                          (4) 

Any non-whole-unit count relates to a change in distance and may be de-
scribed by rounding up (repulsion) or down (attraction). The remainder lost 
to rounding will be denoted by QLf. For all solutions, QLf is less than half and 
thus attractive. An example of repulsion will be explored in the Section 3.13. 
The model provides a count of distance measures that is closer by 

( )1 221Lf Lf LfQ b b= + − ,                     (5) 

at every instant in time. For example, if 4Lfb = , then  

( )17 4 4 0.1231 4Lf LfQ r = − = . Because side c always rounds down, we find 
that rLf always equals bLf. In the following, we shall always refer to the “ob-
served measure count” as rLf. Moreover, note that the reference measure 
against which all counts are measured is defined by aLf = 1. With this we have 
composed an expression for gravity such that the loss of the remainder rela-
tive to the whole-unit count is QLf/rLf. 

Together QLf and rLf are conjectured to represent an important dimension-
less ratio that describes gravity. We proceed with that hypothesis by present-
ing the ratio in meters per second squared (m/s2), where we multiply by lf for 
meters and divide by 2

ft  together describing the distance loss at the maxi-
mum sampling rate of one sampling every tf seconds per second, 

2
Lf f

Lf f

Q l
r t

,                            (6) 

 

 
Figure 1. Count of distance measures between an observer and target where bLf = 4. 
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We now note that this quantity is scaled and hence requires a scaling con-
stant; we multiply by the speed of light c and divide by a scaling constant S. 
Setting r = rLflf and c = lf/tf, Equation (6) reduces to 

 
2 2 3

2
Lf f Lf Lf f Lf

Lf f Lf f fLf f

Q l Q c Q l c Q cc
S r t S r l t S rSr t
= = = ,                (7) 

As the ratio c/S may be understood as 1/kg or a maximum count of mf per 
kilogram, it may also be thought of as the corresponding mass frequency as-
sociated with gravity. Where S = 3.26239, this expression is now equivalent to 
G/r2 to five significant digits for all distances greater than 103lf. Where quan-
tum differences are not a consideration, we may set Equation (7) equal to G/r2 
and therefore 

3

2
LfQ c G
rS r

= ,                          (8) 

3
LfQ rc GS= .                         (9) 

We may interpret S as momentum; hence the units for these expressions 
will match accordingly. Nevertheless, recognizing that S is a dimensionless 
scalar is an important and critical detour that shall be central to the discus-
sion below. Two applicable interpretations will be shown. We first investigate 
S as a momentum, and then perform a similar analysis as an angular measure. 

Consider Equation (9); after rearranging and reducing the term on the 
right with r = rLflf, we use ( )lim 1 2b Lf Lff Q r→∞ =  as noted in Appendix A. In 
passing, the term QLfrLf, referred to as the Informativity differential, plays a 
key role in describing how fractional values less than the theoretical limit de-
scribe a distorting effect in measurement. Consideration of the Informativity 
differential at a limit is a matter of convenience, but to maintain a precise ex-
pression, values for QLf and rLf should always be entered specific to the phe-
nomenon being observed. The values determined can cover the entire physi-
cal regime from one lf to infinity. From Equation (9), we have 

3 2

Lf Lf Lf f f

c S S S
G Q r Q r l l

= = = .                  (10) 

Multiply both sides by tf and reduce to obtain a mass, 
3 2 kgf f f

f

c S Sm t t
G l c

2
= = = .                  (11) 

Hence the momentum of a fundamental measure of mass (light) moving at 
c may be expressed as 

12 kg m s2
f

Sm c c S
c

ρ − = = = ⋅ ⋅ 
 

.                (12) 

We understand S as being half the momentum of a fundamental measure of 
mass. This may also be written as 

12 kg m sf f
f

f

m l
S m c

t
−= = ⋅ ⋅ .                  (13) 

https://doi.org/10.4236/jhepgc.2018.42019


J. A. Geiger 
 

 

DOI: 10.4236/jhepgc.2018.42019 268 Journal of High Energy Physics, Gravitation and Cosmology 
 

Any count of lf must equal the count of tf, hence requiring that S must cor-
respond to mf being fractional. There exists no prerequisite that Informativity 
expressions be composed of whole-unit counts of mf; see O2 of Section 2. 
With this resolved, we now consider S as an angular measure. With the Py-
thagorean Theorem supporting an understanding of S as momentum, then a 
circle supports an understanding of S as an angle. 

Consider Equation (1) organized such that 3 2
fc G l=  . Take Equation 

(10), replace 3c G  with 2
fl  and replace 2πh= . Hence 

3

22 2 2 4π
f f

f ff

hl lcS
G l ll

  
= = = =       

  ,               (14) 

where S = ħ/2lf, then the arc length of a circle of radius lf and angle S is 

2 2f
f

L l
l

rθ
 

= =  
 

=
  .                    (15) 

In Figure 2, we find that an arc-length with θ = 2S radians is precisely the 
value of ħ as meters. Each of the terms has a suitable geometric description: 
• lf radius of a fundamental circle in meters, 
• 2S angle in radians that subtends a segment with an arc length of ħ meters, 
• ħ arc-length of a segment corresponding to the momentum of a funda-

mental Measure of mass. 
Applicability to an existing geometric expression is just the first of several 

tests. Next, we consider support for the equivalence of these two interpreta-
tions. We begin by resolving S in terms of our initial description of gravity 
from Equation (10), 

3
1kg m s

2
fl c

S
G

−= ⋅ ⋅ .                      (16) 

Next consider S = ħ/2lf as resolved in Equation (14). With lfc3/2G a mo-
mentum and ħ/2lf an angular measure, we set them equal giving 

 

 
Figure 2. Arc length of a circle of radius lf and subtending angle θ = S radians. 
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3

2 2
f

f

l c
G l
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

.                         (17) 

Isolating lf to the left-hand side and 
1 2

3 mf
Gl

c
 =  
 

  [2] [3].                   (18) 

The expression clarifies our conjecture of the equivalence between the two 
interpretations: momentum and angular measure. The expression also de-
monstrates that the comparison is in fact a modified form of Planck’s univer-
sally recognized formulation for length. 

Finally, to verify this interpretation, we now seek a quantity where S is: 
• An invariant characteristic of light at a threshold, 
• Described as lfc3/G with respect to momentum, 
• Described as ħ/2lf with respect to angular measure. 

A quantity was measured by Shwartz and Harris in 2011 regarding the 
quantum entanglement of light at the degenerate state [5]. Using polarization 
entangled photons in pure Bell states at X-ray wavelengths, they were able to 
take advantage of the intersections of the component curve (as a function of 
the square of the current density) to resolve pump angles θp where the mag-
nitudes of the components of each Bell state are equal. With this, solutions to 
the phase matching and current density equations were resolved to determine 
the sign of the components at the intersection. Then solving the phase 
matching equations for the signal θs and idler θi with respect to the atomic 
planes, substituting the related electric fields, the current density is a function 
of just the pump angle. With these conditions in place, the momentum of a 
fundamental measure of mass is then equal in value to the angle of the signal 
and idler lfc3/2G with respect to the atomic planes where the pump is at its 
maximum angle. 

There are five pump angles representing two of the Bell states that can 
generate entangled photons and lfc3/2G is uniquely distinguished where θp is 
at its maximum. Shwartz and Harris recognize these Bell states, where H  
is the polarization of the electric field of the X-ray in the scattering plane and 
V  is the polarization orthogonal to the scattering plane which contains the 

incident k vector and the lattice k vector G. Subscripts p, s, and i, respectively, 
denote the pump, signal and idler.  

The expressions in Table 1 arise from Equation (16) each describing an 
equidistant angle either side of 0, π or 2π and are precisely identical in value 
to the Shwartz and Harris measurements. Using the most recent CODATA [2] 
as a guide for the value of lf, we find that 

( )3353

11

1.616199 10 299792458
3.26239 radians

2 2 6.67408 10
fl c

S
G

−

−

× ×
×

= =
×

= .    (19) 

But, where we have made use of Planck’s relation in Equation (14), 
2 3.26250fS l= = . We conclude that our understanding of lf as expressed by  

https://doi.org/10.4236/jhepgc.2018.42019


J. A. Geiger 
 

 

DOI: 10.4236/jhepgc.2018.42019 270 Journal of High Energy Physics, Gravitation and Cosmology 
 

Table 1. Angle setting in radians of the k vectors of the pump, signal and idler for 
maximally entangled states at the degenerate frequency with corresponding Shwartz and 
Harris values (Reference [5]). 

Bell’s State 
k vector angle 

θp θs θi 

( ), , 2s i s iH V V H+  (lfc3/2G) − π (0.1208) π − (lfc3/2G) (−0.1208) π − (lfc3/2G) (−0.1208) 

 2π − (lfc3/2G) (3.02079) (lfc3/2G) (3.26239) (lfc3/2G) (3.26239) 

 
Informativity precisely matches the values presented in the Shwartz and Har-
ris model, but our understanding of ħ when applying Planck’s expression is 
incomplete. The issue that affects Planck’s reduced constant will be resolved 
in Section 4. 

The correlation between S and the angular measures of the Shwartz and 
Harris Bell state is not unexpected. Where the signal and idler are resolved 
specifically to obtain the polarization angles necessary for entanglement, 
seeking the pump angle follows naturally, thereby resolving each of the con-
ditions where entanglement may occur. Informativity is not a coincidental 
alignment of one of these values, but a means of resolving the maximum an-
gular measure corresponding to light in terms of the fundamental measure mf. 
With that, resolving the angular measures for each of the limits described by 
the Bell state follows in a straight-forward manner. 

Where the expression 2S describes the momentum of a fundamental meas-
ure of mass, the term S describes an angle. Both interpretations are valid. The 
juxtaposition of units describes a relationship that is conflicting, similar to 
Einstein’s relation E = mc2, which expresses energy in joules as a form of mass 
in kilograms, and vice versa. This presentation demonstrates that momentum 
and angular measure are one and the same. 

With this understanding we consider replacing the scalar term S with θsi. 
The term alludes to recognizing the angular measure of the signal and idler 
under some conditions and momentum under others. Although both inter-
pretations are applicable, θsi is retained emphasizing that we are not working 
with a theoretical value, but an invariant macroscopic measure. Additional 
research regarding the measure of θsi has been reported [6], where the error in 
angular measurement is estimated to be less than 2 micro-radians. 

In reflecting on Planck’s work, one might argue that this approach is a ba-
sic presentation of a derivation of Planck units. One must take note that the 
role of fundamental measures at this point is a mathematical construct, a 
proposed interpretation of the existing argument. The measures exist only in 
their expression until formally resolved in the next section. Whereas 
CODATA estimates may be used to guide our understanding of S, up to this 
point no theoretical values are assumed. Our confidence in correlating S to θsi 
rests in the correctness of the two interpretations of S and their correlation 
accounts for Planck’s expression for length. 
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One might also view this approach as an innovative alternative to Newto-
nian vector calculus thus side-stepping what might be an otherwise tradition-
al understanding of gravitation. However, this argument would also work 
against an underlying premise of this paper, that higher-order operators 
(other than the four basic arithmetic operators) disguise the fundamental 
constructs. Where a treatment using vector calculus would resolve the tradi-
tional presentation, the quantum relationship to θsi would be lost or at least 
well-disguised. 

3.2. Fundamental Measures 

With the θsi correlation, we may now resolve the fundamental measures lf, mf, 
and tf, not as a theoretical construct, but with physical expressions constrained 
by the characteristics of light and gravity, consisting entirely of macroscopic 
measures. We start with Equation (10) by solving for lf, 

( )

11
35

3 3

2 2 6.67408 10 3.26239 1.61620 10 m
299792458

si
f

Gl
c
θ −

−× × ×
= = = × ,    (20) 

where time follows from the definition tf = lf/c. Replacing lf with Equation (20) 
gives 

( )

11
44

4 4

2 2 6.67408 10 3.26239 5.39106 10 s
299792458

f si
f

l Gt
c c

θ −
−× × ×

= = = = × .   (21) 

Finally, reordering time to resolve mass 
3

82 2 3.26239 2.17643 10 kg
299792458

si
f f

cm t
G c

θ −×
= = = = × ,        (22) 

where interpreting S = θsi as a momentum yields the appropriate units. Most 
importantly, whereas the value for θsi is obtained from a macroscopic measure-
ment, Planck’s approach is achieved as a theoretical construct. Establishing that 
these values are the same provides a new foundation with which to build a mod-
el based entirely on physical measurements. Also note, whereas lf and tf are pro-
posed to be the smallest significant measures, mf is not; mf does play a central 
role in many expressions because it is a product of lf and tf, i.e. mf = 2θsitf/lf, and 
for that reason the term is retained. 

The Informativity formulation parallels Planck’s although the expressions are 
presented in quantized terms and are entirely formulated under the background 
independent framework of Informativity. An additional characteristic of the 
fundamental measures is that they are not a product of Planck’s formulations, 
Planck’s constant or any quantum term. Rather, values are derived using only 
the geometric expression 3

Lf siQ G rcθ= . The expression depends on c, r, G 
and θsi and all are resolved macroscopically. Where Lf fr r l=  and 

( )lim 1 2r Lf Lff Q r=∞ =  from Appendix A, the relation is rearranged to give 

( )3 2si fl c Gθ = . If the expression were not derived by observations regarding 
light and gravity consisting entirely of macroscopic measures, the fundamental 
measures would be unconstrained. 
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Planck’s approach provides a valid way to constrain the fundamental meas-
ures, but the solution provides no mechanism to confirm the approach through 
measurement indirectly confirming the significance of the measures. The Infor-
mativity approach recognizes the significance of θsi and uses that to resolve lf, mf, 
and tf. Whereas both approaches arrive with the same conclusion, the ability to 
resolve the fundamental measures as a product of macroscopic phenomena is an 
important and decisive difference. 

It should finally be noted that the fundamental measures lf and tf can never be 
directly resolved with identical or greater precision. This would defy their defini-
tion. The fundamental measures are the references against which everything is de-
fined. It would be neither possible nor meaningful to measure a reference where 
the most appropriate reference is the reference itself. Fundamental measures can 
only be inferred as a characteristic of nature that indicates their significance. 

3.3. Newton’s Constant 

Using Equation (8) at the quantum scale to calculate G will show a difference 
with Newton’s presentation. Is G variable [7]? No. The difference is a reflection 
of the precision between the geometric model of Informativity in comparison to 
Newton’s presentation. Newton’s expression does not include the geometric 
distortion effect inherent in the Informativity differential QLfrLf as numerically 
assessed in Table 2. 

For clarity, we work through a calculation. A distance of 1 meter is intention-
ally selected such that 2 1G r G G= = . Using Equation (20) for lf, the inverse 
gives us a count in 1 meter such that 346.18735 10b = × ; that is, 

21LfQ c b b b= − = + − ,                    (23) 

( ) 34 36234 6.18735 11 0 8.08100 106.18735 10LfQ −= + × − × = × , 

( )33 36
11 28.08100 10 299792458

6.67407 10 m kg s
1 3.26239

Lf

si

Q c
rθ

−
−× ×

= = × ⋅
×

.   (24) 

With only our understanding as prescribed by the Pythagorean Theorem and 
expressed in Equation (7), this is G/r2 at a distance of 1 meter, and therefore 
numerically equal to G. The formulation depends on an understanding of lf, 
which may be resolved from the expression presented in Equation (20). The 
value is also identical to the most recent CODATA estimate of Planck’s formula-
tion of length. The CODATA [2] [8] estimates of Planck units have changed 
over recent years, but those estimates continue to give support to the expressions  

 
Table 2. Informativity difference in G/r2. 

 
Difference in G/r2 

50 lf 100 lf 200 lf 300 lf 500 lf 1000 lf 

Difference 0.01000% 0.00250% 0.00062% 0.00028% 0.00010% 0.00003% 
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of Informativity. 
While Informativity does provide a concise geometric expression for G, the 

term may also be understood as a physically significant product of two limits.  
To understand, we will need more formal definitions for the fundamental lim-

its. Begin by considering time as a convenient measure with which to better un-
derstand length and mass. We may then ask what is the upper limiting relation 
of lf and mf with respect to time, tf? 

82.99792458 10 m sf fl t = × ,                 (25) 

354.0371111 10 kg sf fm t = × .                 (26) 

The first expression embodies the number of meters traversed by light in a 
second. Similarly, the second expression embodies the number of kilograms that 
may be traversed in a second. By implication, each describes the maximum rate 
of change that may be observed in one measure relative to the other measure. 

As such, we may interpret lf/tf as an upper bound to speed; such an interpreta-
tion is quite valid. Nevertheless, the focus of the expression is that the value is an 
upper bound to this observation. In a system with a fixed rate of change 1/tf and 
an upper bound to the observation of units of lf per tf, once that bound is 
reached, the observer can no longer distinguish a greater number of events. To 
do so would violate our understanding of the fundamental measures of length 
and time implying that we would be able to observe measures smaller than the 
fundamental measures. Moreover, it is not that physical phenomena cannot 
overlap in space-time, but that an observer has a specific upper bound to the 
number of events that may be distinguished. 

Before we begin, note that up to this point we have distinguished counts of 
Planck units (i.e. nLp) from the fundamental units of Informativity (i.e. nLf). 
Moving forward, all counts that reference fundamental units and will not carry 
the subscript f following the designated measure. The only exception to this rule 
will be components of the Informativity differential, QLfrLf. 

To express a count of lf, mf and tf, we would divide the rate by the respective 
unit measure. 

8 432.99792458 10 1.85492 10 units sL fn l= × = × ,         (27) 

35 434.0371111 10 1.85492 10 units sM fn m= × = × ,         (28) 

431 1.85492 10 units sT fn t= = × ,                (29) 

Thus, observe that 
O5: A count of each of the fundamental measures with respect to any shared 

measure is the same. 

L T Mn n n= =                         (30) 

where one may describe matter as constrained to traverse no more than 
2.99792458 × 108 meters per second (i.e. the speed of light), we should say that 
observation is constrained to no more than 1.85492 × 1043 units of measure per 
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second. The comparison brings to our attention that change is constrained. For 
all measures, there exists a maximum frequency such that a target may have: 
• A maximum length frequency of lf/tf, 
• A maximum mass frequency of mf/tf and, 
• A maximum count frequency of 1/tf. 
Where G is expressed in terms of maximums such that 

3 3 3 3
3 2kg s

2
Lf Lf Lf f f f f f f f

si si si f f f f f

Q rc Q r l c c l c t l l l t
G m

m t t t mθ θ θ
= = = = = ⋅ ,    (31) 

we now recognize that Newton’s expression is a formal description of the maxi-
mum rate of change in space (i.e. the three dimensions) with respect to (i.e. di-
vided by) the maximum rate of change in mass. In that there are no other com-
binations of the fundamental measures with respect to space, we find gravity a 
unique and singular phenomenon for which there are no other examples. 

To further our understanding of gravitation, consider a cube with sides meas-
ured in terms of lf equal to the distance that light travels per second. We find 
that this cube contains a count of c3 units of daughter cubes, each having sides 
equal to lf. The parent cube provides a grid-like understanding of an inertial 
frame describing the maximum frequency of lf relative to tf. 

Next, consider mf/tf as a scalar quantity defining a count of mass units—the 
maximum mass frequency—that may exist along the edge of the parent cube. 
Thus, dividing the cubic length frequency (lf/tf)3 by the mass frequency mf/tf 
gives a fixed relation for mass relative to an observer in space; in other words, 
this is the most appropriate understanding of the gravitational field relative to an 
inertial frame. 

We expand on this approach by also noting that, where G expresses a property 
of gravity, then the speed of gravity, sgravity, may be resolved by a process of fac-
toring out known components. First, multiply G by the mass frequency thereby 
removing the mass component. Next, reduce space-time by dividing the cubic 
length frequency in two of the three dimensions, c2, such that the linear speed of 
gravity is 

gravity 2

1

m s

f

f

m
s G

t c

c

=

=

.                      (32) 

Some might argue that this is merely a means of resolving the speed of light. 
In some sense this is true, but not in the context of expressions concerning the 
relative relation between length, mass, and time. In that context, we are seeking 
the maximum rate of change of mass with respect to space. To succeed in this 
endeavor, we must first factor out the mass frequency and then reduce space to a 
measure in one dimension. In this context, we find the rate of change for the 
phenomenon of gravity relatively in one dimension is c. This can already be seen 
from Equation (30) where a count of length measures lf will equal a count of 
mass measures mf such that nL = nM. 
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3.4. Planck’s Constant 

To build on our understanding of G presented in Section 3.3, we investigate how 
the use of macroscopic and quantum terms affects the calculation of physical 
measures. We begin by formulating a known Informativity expression that may 
serve as a reference. Dividing Equation (9) by G, substituting r = rLflf, and fac-
toring c3/G, we obtain 

3 33

3.26239 radians
2

Lf f
si Lf Lf f

Q rc c lc Q r l
G G G

θ
 

= = = = 
 

.        (33) 

The measure for θsi matches the angular measurements made by Shwartz and 
Harris. We derived lf because of the correlation of S and θsi. Comparing Planck’s 
formulation in Equation (1) where 3 2

fc G l=   and substituting it into Equa-
tion (33) yields 

3

2 3.26250 radians
2si Lf Lf f Lf Lf f

ff

c Q r l Q r l
G ll

θ
  

= = = =       

  ,      (34) 

where G and r2 are macroscopic factors whereas ħ has a quantum origin; all val-
ues of fundamental units, such as lf, are neither macroscopic nor quantum, but 
treated as constants. For convenience, the macroscopic limit of the Informativity 
differential is taken, and not its quantum limit. This is acceptable when working 
with macroscopic terms, but when working with quantum terms, including the 
Planck constant, that limit produces inaccurate results. The Informativity diffe-
rential needs to be retained and expressions properly calculated regarding the 
actual distance of the measured interaction. With respect to the conditions that 
lead to the measure of ħ, distance as a count of lf may be resolved by solving for 
rLf using its expression in Equation (C7) as derived in Appendix C, 

( )
1 84.85536
2Lf si f

si f

r l
l

θ
θ

=
−

=
 

.               (35) 

Note that rLf must be a whole-unit count, 85lf. Resolving a quantum distance 
provides an understanding as to why Planck’s constant as it is currently defined 
is appropriate in expressions such as the fine-structure constant [9]. Hence, use 
of Planck’s reduced constant at an Informativity differential distance of 85lf 
produces the correct result. However, the expression is not appropriate in ex-
pressions consisting entirely of macroscopic measures. With G, both factors vary 
depending on the Informativity differential. 

We understand this effect better by solving for ħ using Equation (34) and then 
comparing that to the currently recognized value of 341.05457 10−= ×  [2]. For 
this purpose, we see in Table 3 that the variation in ħ changes quickest within 
the first few lf. 

If we wish to use ħ with macroscopic terms, then we need to resolve the value 
of ħ at a macroscopic distance. A good example would be Planck’s theoretical 
relations for length, mass, and time, which involve macroscopic terms G and c. 
Solving Equation (34) for ħ at a macroscopic distance ( )lim 1 2b Lf Lff Q r→∞ = , 

https://doi.org/10.4236/jhepgc.2018.42019


J. A. Geiger 
 

 

DOI: 10.4236/jhepgc.2018.42019 276 Journal of High Energy Physics, Gravitation and Cosmology 
 

then 
2

342 1.05454 10 J sf si f si
si f

Lf Lf f Lf Lf

l l
l

Q r l Q r
θ θ

θ −= = = = × ⋅ .         (36) 

With this value, the distance-adjusted Informativity and Planck formulations 
are now mathematically equivalent and the variation in G and ħ cancel out: 

1 2

3 3

2
msiG G

c c
θ  =  

 

 ,                     (37) 

1 2

4 5

2
ssiG G

c c
θ  =  

 

 ,                      (38) 

1 22
kgsi c

c G
θ  =  

 

 .                      (39) 

Each expression may be reduced to 
2 34 siG cθ =                           (40) 

where uncertainty exists in the derivation of lf, mf, and tf, we may express the 
fundamental measures in terms of θsi instead of ħ. This expression confirms that 
any geometric distortion in ħ is proportionally compensated with the same in G. 
We are also more aware of the important role played by the Informativity diffe-
rential and have confirmed that these two very different approaches arrive at 
precisely the same result. Note further that this is a well-grounded physical ex-
pression that may be used to resolve each of the fundamental measures, thus 
providing significance to each. Finally, with a distance adjusted value for ħ, we 
can return to the Shwartz and Harris results as presented in Table 1 and cast 
them in terms of the ratio of arc length and diameter of a circle. 

With 341.05454 10 J s−= × ⋅  from Equation (36) and 351.61620 10 mfl −= ×  
from Equation (20) (where their ratio corresponds to units in radians as resolved 
in Equation (15)), these expressions precisely match the Shwartz and Harris val-
ues [5]. Whether presented in macroscopic or quantum terms, we find the an-
gular measures presented in Table 4 may be resolved. 

 
Table 3. Informativity difference in Planck’s reduced constant ħ. 

 
Difference in ħ 

85 lf 100 lf 200 lf 300 lf 500 lf 14 bly 

Difference 0.00001% 0.00097% 0.00285% 0.00319% 0.00337% 0.00347% 

 
Table 4. Angles in radians for the k vectors of the pump, signal, and idler for the 
maximally engangled states at the degenerate frequency with corresponding Shwartz and 
Harris values (Reference [5]). 

Bell’s State 
k vector angle 

θp θs θi 

( ), , 2s i s iH V V H+  (ħ/2lf) − π (0.1208) π − (ħ/2lf) (−0.1208) π − (ħ/2lf) (−0.1208) 

 2π − (ħ/2lf) (3.02079) (ħ/2lf) (3.26239) (ħ/2lf) (3.26239) 
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3.5. Fundamental Measures Correlated 

In Equations (20)-(22), solutions to the fundamental measures are resolved and 
while they are appropriate for use in macroscopic terms, it is not representative 
of a distance-sensitive formulation. Here, we resolve distance-sensitive expres-
sions and demonstrate their use in several well-known expressions. We begin 
with Equation (11) and expand the right-hand term restoring the Informativity 
differential to mass that was factored out in Equation (10) with the limiting 
process (Appendix A), 

2 si si
f

Lf Lf

m
c Q r c
θ θ

= = .                     (41) 

We may now translate mass to a length and time by applying the fundamental 
transforms (Appendix B) ( )f fl m∆ →  where 2

f fl c G m=  (B2) and  
( )f ft m∆ →  where 3

f ft c G m=  (B3) to obtain 

3
si

f
Lf Lf

Gl
Q r c
θ

= ,                        (42) 

4
si

f
Lf Lf

Gt
Q r c
θ

= .                        (43) 

We may further reduce length with 3
f fG c t m=  (B3), time with 2G c =  

f fl m  (B2), and mass with f fc l t=  (B1). 

si f f si
f

Lf Lf f f Lf Lf

t t
l

Q r m m Q r
θ θ 

= =   
 

,                 (44) 

2

2 2
si f si f f Lf Lf f f Lf Lf

f f f
si siLf Lf f Lf Lf f f

l l t Q r m l Q r
t m l

Q r m c Q r m l
θ θ

θ θ
 

= = = =  
 

,     (45) 

si f f si
f

Lf Lf f f Lf Lf

t t
m

Q r l l Q r
θ θ 

= =   
 

.                  (46) 

Thus, we have each of the fundamental measures in their most robust form. 
Where ( )lim 1 2b Lf Lff Q r→∞ =  then each expression may be reduced to 

2f f si fl m tθ= .                        (47) 

This expression provides the simplest understanding of length, mass and time 
and there relation. The correlation is used often and will be referenced hereto-
fore as the fundamental expression. 

Note also that we may also resolve expressions for other measures such as 
energy. Using mass from Equation (41) and Einstein’s equation where nM is a 
count of the fundamental mass measure, then 

2 2si si
Mf Mf

Lf Lf Lf Lf

cE mc n c n
Q r c Q r
θ θ   

= = =      
   

.            (48) 

Here 1Mfn =  and ( )lim 1 2b Lf Lff Q r→∞ = ; we may then write 

2 siE cθ= .                         (49) 
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In comparison, if we reduce 4π si fh lθ=  as expressed in Equation (14), then 
Planck’s formulation fE nhv h t= =  is 

4π
4π

f

si f
Mf Mf Mf siE

l
v

t
n h n n c

θ
θ

 
=  


=


= .              (50) 

The energy of one fundamental measure of mass is 2 2m siE mc cθ= =  from 
Equation (49), and the energy of one photon is l fE hv h t= = . Substituting 

4πsi fh lθ =  from Equation (14) and resolving for Em, we have 

22 1
4π 2π

fm si

l f f

lE h
E h t h l

θ
= = = ,                  (51) 

2 21 kg m s
2π 2π 2π

l
m

E hvE hv − = = = ⋅ ⋅ 
 

.               (52) 

Whereas Planck associated the energy of quantum states with harmonic oscil-
lators that modeled the atoms lining the cavity, the correlation of energy be-
tween a fundamental measure of mass and Planck’s blackbody spectrum is pre-
cisely a product of 2π. While comparing the two is not a precise contextual 
match, the correlation does reinforce our prior observation that angular measure 
and momentum are one and the same and only as such can we fully appreciate a 
value of n = 1/2π. 

3.6. Quantum Uncertainty 

With the fundamental measures at hand, we turn our attention to Heisenberg’s 
uncertainty principle [10] first presented in 1927. The principle may be de-
scribed as an expression representing a suite of mathematical inequalities that 
prescribe a fundamental limit to the precision with which pairs of physical 
properties of a particle can be known. These pairs are known as complementary 
variables. Pertaining to the position and momentum of a particle, the uncertain-
ty principle states that the more precisely the position is determined, the less 
precisely its momentum is known. A more formal inequality relating the stan-
dard deviation of position σx and the standard deviation of momentum σp, 

2X Pσ σ ≥
 .                         (53) 

was derived by Kennard [11] later that year and Weyl [12] in 1928. 
With respect to Informativity, we find that our understanding of this product 

remains unchanged, but the components may be further refined. With the stan-
dard deviations in position and momentum, denoted by f(rLflf) and f(mfv), re-
spectively, we may use mass as expressed in Equation (41) and replace the arc 
length ħ/2 with Equation (36). With mass incorporating the Informativity diffe-
rential QLfrLf, we introduce the same in position, 

( ) ( ) ( ) M si
Lf f Lf Lf si f

Lf Lf

nf r f mv r l Q r v l
Q r c

θ
θ

 
= ≥  

 
.           (54) 

Here the Informativity differential in position and momentum cancel out; the 
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differences are the individual uncertainties. This observation is predicated on 
our modified understanding of mass. 

Another issue concerns what happens when we reduce this formulation. First, 
we cancel out the Informativity differential, θsi and lf. With c = lf/tf and v a count 
of lf traversed per tf (denoted as nL), nM is a count of the mass measure and rLf a 
count of lf between the observer and target, then 

( ) 1M
Lf

n vr
c

  ≥ 
 

,                       (55) 

( ) 1f Lf LL
Lf M M

f f f

t r nnr n n
t l l

   
= ≥      

   
,                (56) 

M Lf L fn r n l≥ .                        (57) 

With this, we see that uncertainty is threefold: mass, position and velocity. 
There are several notable outcomes. Where v = c, the uncertainty is reduced to 
just mass. Second, note that time is not a term associated with uncertainty. Third, 
the boundary for these three terms is lf which until now seemed only a conve-
nient theoretical unit of measure. Therefore, where we find physical support for 
the Heisenberg uncertainty principle, we must also find lf to be of physical signi-
ficance, defining the threshold.  

3.7. Relativity 

Measurement quantization may be applied to Einstein’s dilation expressions, 
both SR and General Relativity (GR) where recognizing the dilation metric 

( )( )1 22 21 v c−  and substituting the respective fundamental measures. Where 
nLc is the count of lf traveled by light in a second and nL the count of lf respective 
of the velocity v between the observer and target, then 

1 2 1 21 2 2 2 2 2 22

2 2 2 2 2 21 1 1L f T f L

T f Lc f Lc

n l n t nv
c n t n l n

    
− = − = −          

.            (58) 

Where subscripts o identify the local frame and l the observed frame, then the 
corresponding quantized dilation expressions for SR are 

1 22

21 L
o l

Lc

nt t
n

 
= − 

 
,                      (59) 

1 22

21 L
o l

Lc

nl l
n

 
= − 

 
,                      (60) 

1 22

21 L
o l

Lc

nm m
n

 
= − 

 
.                    (61) 

Likewise, where escape velocity ( )1 22ev GM r=  and where 3
f fG t c m=  

from Equation (31), then 
3 3

2 22 2 f M f
e M f

f Lr f

t c n t cGMv n m
r r m n l

= = = ,              (62) 
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3 3 2
2 2 2 2M f M M
e

Lr f Lr Lr

n t c n c n cv
n l n c n

= = = ,                (63) 

2

2 2e M

Lr

v n
nc

= .                         (64) 

where 2
ev , Equation (18), is a subset of v2, Equation (12), then 

2

2 2L M

LrLc

n n
nn

= ,                         (65) 

1 2

2 M
L Lc

Lr

nn n
n

 
=  

 
.                      (66) 

Notably, 2, nLc, nM and nLr are fixed system values; the count nLc of lf traveled 
by light in a second, the count nM of mf representing the system mass and the 
count nLr of lf between an inertial frame and the center of gravity each contribute 
to describe a change in position nLlf per second in SI units (i.e. when multiplied 
by lf/tf).  

Where v2/c2 from Equation (58) includes 2 2
ev c  in its domain we don’t in-

voke the equivalence principle. Rather, the dimensionless ratio (2nM/nLr)1/2 estab-
lishes the relationship between nL and the upper bound nLc with respect to nM, 
Equation (66). Thus, we describe gravitational dilation (i.e. GR) by replacing the 
SR term with the value equivalent system ratio. 

1 2

1 2 M
o l

Lr

nt t
n

 
= − 

 
,                      (67) 

 
1 2

1 2 M
o l

Lr

nl l
n

 
= − 

 
,                      (68) 

1 2

1 2 M
o l

Lr

nm m
n

 
= − 

 
.                    (69) 

While Einstein disliked the concept of relativistic mass [13], measurement 
quantization skirts the issue describing measurement in a gravitational field 
without undefined values for the entire measurement domain. 

3.8. Hubble’s Constant 

We will now take the principles of fundamental measure and look not at the very 
small, but the very large … the cosmological properties of our universe such as 
the expansion of space. The exploration will begin first with a more defined un-
derstanding of expansion in the traditional terms presented by Hubble and then 
build on that foundation to explore dark energy, the inflation prior to expansion 
and then assemble everything that transpires from the birth of the universe to 
what we see today. Notably, the expressions of Informativity do not suffer from 
infinities or limits that restrict our understanding of phenomena. 

We may resolve Hubble’s constant using the principles of Informativity by 
considering the simplest relation between length, mass, and time, i.e., the fun-
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damental expression, lfmf = 2θsitf. But first, we will need to expand the expression 
to include counts of the fundamental measures, nL units of length, nM units of 
mass and nT units of time such that 

2L f M f si T fn l n m n tθ= .                     (70) 

If the system is the observable universe, we may propose that the elapsed time 
(an increasing count in nT) must correspond to an equivalent increase in counts 
for either length or mass. Note that these are system properties and are not nec-
essarily applied in a scalar fashion from the point of view of an inertial frame. 
System properties are applicable only with respect to the system as defined in the 
above expression. We will go over the process of applying system properties to 
derive values in subsequent sections. For now though, with respect to the fun-
damental expression, note that: 

O6: The values of lf, mf, and tf are invariant. Given each of the component 
measures as resolved where Equations (1)-(3) are known to be invariant, we find 
support for invariance of the fundamental measures in the local frame. Where c 
= lf/tf is invariant, it follows that the ratio of lf to tf must also be invariant, with 
the one constrained by the other. 

O7: The measure lf is physically significant. Support for the physical signific-
ance of lf may be found in the example of momentum and velocity as applied to 
the uncertainty principle. Using Informativity, the product may be reduced such 
that nMrLfnL ≥ lf (Eqs. 53–57), thus demonstrating the significance of lf. 

O8: Any count of lf must equal a count of tf. As c = nLlf/nTtf, support for an in-
variant value for the speed of light c cannot be maintained unless nL = nT. 

O9: The count nM must equal an invariant count of 2θsi (in this case, nM = 1). 
Any variation in the count of nM is in conflict with supporting the conservation 
of momentum. 

Where these constraints are strongly supported, we conclude that the elapsed 
time (an increasing count of tf) must correspond with a universe that also has 
increasing length (an increasing count of lf). A better description of space is not 
a process of stretching, but a geometric relation that corresponds to an increas-
ing count of length measures equal to the same count in time measures. New 
units of lf are being added to the reference system uniformly and in a discrete 
manner. The process is best understood as a reference system that increases in 
volume in proportion to an increase in time, the two measures being defined 
against one another where the ratio of the counts of lf with respect to tf are fixed. 

Let us take this moment to reaffirm our understanding of space. Specifically, 
any inertial frame that presents no net force on an observer defines the origin of 
a reference frame for that observer that is at rest with respect to the measure of 
space. When we say that space expands, we say that static points of reference in 
relation to the inertial frame experience an increasing relative distance without 
experiencing a net force. 

With this, let us also take this moment to differentiate the expansion of space 
(universal expansion) from the expansion of matter within space (stellar expan-
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sion). There is no specific correlation between the two. At this point, we can on-
ly interpret the expressions above in such a way that space expands and that 
matter rests within space moving relatively by whatever means depending on its 
initial conditions. 

It follows that a background independent system that has aged by a time AU = 
nTtf must expand correspondingly by an equal count of lf such that lf/tf = c for all 
inertial frames within the system. This may occur specifically when nL = nT. 
Thus, with respect to an inertial frame, the expansion must occur at the rate H = 
1/AU. To place H in the proper form, we multiply the inverse of the age of the 
universe in seconds by the unit conversion 1 = km/Mpc. 

Given the age of the universe is 13.799 × 109 years, where there are 3.15576 × 
107 seconds in a Julian year and where there are 3.0857 × 1019 kilometers per 
megaparsec [14], then space expands at a rate of 

19
1 1

9 7

1 km Mpc 3.08567758 10 km Mpc 70.860 km s Mpc
13.799 10 y 3.15576 10 s yU

H
A

− −×
= = = ⋅ ⋅

× × ×
 (71) 

We denote the expansion of space, the universal expansion, by H to distin-
guish the value from Hubble’s descriptor H0, which describes the rate of expan-
sion of the universe obtained from the recession of galaxies from one another in 
space, i.e., the stellar expansion. Converting H to SI units, we may also present 
the universal expansion as a frequency where 

18 1
19

70.860 km s Mpc 2.2964 10 s
3.08567758 10 km MpcfH − −× ⋅

= = ×
× ×

        (72) 

Given the general expression as applied to stellar expansion is typically calcu-
lated using Hubble’s law, expressed as v = H0D, we find that this law may be un-
derstood in terms of Informativity as a factoring of the fundamental expression 
presented in Equation (47). As such, the value for H may be resolved for any 
moment in time as a necessary outcome in preserving the relation between 
length and time such that lf/tf = c. 

We also find that the value for H (but not necessarily H0) decreases as the un-
iverse ages. Although each of the prior Informativity expressions describes the 
expansion of space and not the expansion of matter, both measures H and H0 
demonstrate a significant correlation as demonstrated in several studies. An 
analysis of the Wilkinson Microwave Anisotropy Probe (WMAP) data obtained 
over a seven-year period combined with other cosmological data using the sim-
plest version of the ˄CDM model has produced a complementary value of 

1.3 1 1
0 1.470.4 / km s MpcH + − −

−= ⋅ ⋅  [15]. Another study using time delays between 
multiple Hubble space telescope images of distant variable sources produced by 
strong gravitational lensing, resolved a value of 2.4 1 1

0 3.071.9 / km s MpcH + − −
−= ⋅ ⋅  

[16]. 
Whereas the rate at which galaxies are moving away from one another may 

move faster or less than the expansion of space, most studies interestingly show 
a stellar expansion that nearly coincides with the Informativity calculation of H, 
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the universal expansion. This correlation provides support for a model where 
matter has had almost no motion relative to space since the Big Bang and has 
been carried along with the expansion, stationary with respect to space, minus 
the effects of gravitational attraction. 

Lastly, it should be noted that these calculations do not take into account a 
period of expansion referred to as inflation, but we may also note that the infla-
tionary epoch is less than the precision currently known for the age of the un-
iverse. This will be revisited in Section 3.14. 

3.9. Self-Referencing and Self-Defining Measures 

The universe as a self-defining system of measures is an important frame of ref-
erence when developing expressions that describe the universe. Our current 
model of measurement is premised on a framework of self-referencing measures. 
That is, we define each measure as an understanding of other measures. When 
the frame of reference is the universe, that methodology presents a problem. The 
universe has no framework with which to define measure. Specifically, the un-
iverse is that which has no relation to any other thing. The issue pushes us to-
wards considering the measurement of the universe with measures defined rela-
tive to the universe. 

In this section, we consider the idea that a framework of self-defining meas-
ures can describe characteristics of the universe (i.e. dark energy). Phenomena 
then consist of both self-referencing and self-defining terms in respect to two 
frames of reference. To provide a grounded understanding of these differences, 
we present measures for both, starting with the self-referencing expressions, Eq-
uation (47): 

2 si f
f

f

t
l

m
θ

= ,                         (73) 

2
f f

f
si

m l
t

θ
= ,                         (74) 

2 si f
f

f

t
m

l
θ

= .                        (75) 

To resolve self-defining expressions, we then expand these expressions in 
terms of fundamental expressions, set the target measure equal to a value of one 
(that is, a measure defined against itself) and solve for counts of the remaining 
two measures. 

To avoid confusion, we denote the self-defining measures as well as their 
counts with the subscript u. As an example, for length lu = 1, for mass mu = 1 and 
for time tu = 1. This approach provides physically significant expressions that 
describe properties of our universe with respect to the universe. In the interest of 
brevity, corresponding derivations for length and time are carried out in Appen-
dix D. 

To understand the counts of length nLu and time nTu we start with the 
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self-referencing expression for mass from Equation (75) and then 

2 2 2si f si T f si T

f L f
f

L

t n t n
l n l c n

m
θ θ θ

= = = .                (76) 

where c = nTtf/nLlf then nL = nT. To resolve this expression for mass, we set the 
value of mf equal to one. Substituting the representative term, mu = 1 for mf, re-
ducing and then substituting the self-referencing term for mass back into the 
expression (i.e., mf = 2θsi/c), then 

1
2 si Tu

u
Lu

nm
c n
θ

= = ,                      (77) 

2 si Lu

Tu

n
c n
θ

= ,                         (78) 

Lu
f

Tu

nm
n

= .                         (79) 

The approach presents an expression that is no longer self-referencing, but a 
self-defining count ratio, keeping in mind that nLu/nTu is also dimension-free. 
Hence, whereas the ratio is equivalent in value to mf, the expression has no units. 
Nondimensionalization is a physically significant feature of Informativity that is 
a product of the self-defining properties of a system. 

From this ratio multiplied by the speed of light, it follows that the value for 
Hubble’s constant HU using self-defining terms is 

Lu
U

Tu

nH c
n

=  m/s per universe.                 (80) 

To distinguish the value from H, which is measured per megaparsec, we use 
here a subscript U to indicate that we are using the self-defining reference, the 
universe. Likewise, where mfc = 2θsi from Equation (75), we may write the val-
ue-equivalent expression 

2Lu
U si

Tu

nH c
n

θ= = .                      (81) 

Although equivalent in value, the expression differs in units. Expressing the 
Hubble constant in this way may be convenient, but presents a confusing mix of 
terms that are both self-referencing and self-defining. When expressions have 
mixed terms that derive from different frames of reference, unit analysis fails. 
The observation differs dramatically from an error in calculation. Errors are as-
sociated with a difference in value and units. Informativity expressions that mix 
differing frames of reference differ only in units. This aspect is further explored 
in Appendix E. 

3.10. Size of the Universe 

Having resolved that the time frequency must correspond to an expanding space, 
as described in Equation (71), we may now substitute and group the counts of 
the fundamental units to resolve expressions for the diameter and age of the un-
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iverse. First, multiply both sides of the fundamental expression, Equation (47), 
by (nTtfnLlf), and then regroup terms. Next substitute the self-defining expres-
sions for the diameter of the universe for DU = nLlf (billion light-years) and its 
age AU = nTtf (billion years); we then have 

( ) ( )2T f L f f f si f T f L fn t n l l m t n t n lθ= ,               (82) 

( ) ( )2T f
L f f si T f

L f

n t c
n l m n t

n l
θ

 
=  

 
,                 (83) 

2U
U f si U

U

A cD m A
D

θ
 

= 
 

.                    (84) 

Next, we move DU to the right and break down the right portion to determine 
its value. With AU = nTtf, DU = nLlf, and mf = 2θsi/c from Equation (75), then 

22 2si fsi U siT T T
f

U f L L L

tA n n nm
D l n c n n

θθ θ
= = = ,              (85) 

The result is a self-referencing expression. We may formally recognize the 
frame of reference as the system by replacing the count terms with their respec-
tive system terms, nLu and nTu. The expression may then be reduced with the 
self-defining expression mf = nLu/nTu from Equation (79), 

1 1Tu
f f

Lu f

nm m
n m

= = .                     (86) 

Thus, where 2θsiAU/DU = 1, and mfc = 2θsi from Equation (75), then Equation 
(84) may be reduced to 

2 2 3.26239 13.799 90.035 blyU si UD A= θ = × × = ,          (87) 

890.035 2.1764 10 kg
13.79 299792458

U
f

U

Dm
A c

= −= = ×
×

.         (88) 

where the second expression follows directly from the first, then 2θsiAU/DU = 1 
may be substituted into Equation (84) and reduced to produce the later. These 
expressions also confirm that the system constant between diameter and age is 
precisely 2θsi, as resolved in the self-defining expression, Equation (81). The ex-
pansion of space advances at (1/2θsi) × 100 = 15.326% of the reference. Notably, 
without the introduction of self-defining measures, the expressions are mere 
extrapolations of measures in the local frame. Only by setting our frame of ref-
erence to the universe can we produce valid descriptions of the universe from 
our perspective. 

And finally of notable importance, in addition to our analysis of the Heisen-
berg uncertainty principle (i.e. Equation (57)), the later expression demonstrates 
the physical significance of mf. 

In the physics literature, measurements by Riess et al. [17] show a stellar ex-
pansion of 10% - 15%. Measurements for DU and AU are also measured at 91 bil-
lion light-years and 13.799 ± 0.021 billion years, respectively [18]. In 2011, for-
mulations by Barrow and Shaw [19] comparing the cosmological constant and 
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the age of the universe had been worked out predicting a corresponding rela-
tionship. In 2015, analysis of WMAP data by Gasanalizade and Hasanalizade [20] 
also confirmed the correlation between the age of the universe and its expansion. 

It is important that there is no confusion between these expressions which 
describe a geometric expansion of space as opposed to the expansion of galaxies 
in space. Without knowing the on-going conditions between matter and space 
there exists no means of correlating the two and providing a means of measure-
ment. 

Note that, whereas each expression describes a property of the universe, the 
terms and their associated units can be misleading. As noted previously, system 
expressions are appropriately expressed in self-defining terms. Mass has already 
been resolved in Equation (79) as mf = nLu/nTu. From Equation (81), (nLu/nTu)c = 
2θsi with DU and AU in meters and seconds, then the self-defining presentation of 
Equation (87) is 

Lu
U U

Tu

nD cA
n

= .                        (89) 

The expression confirms itself and our understanding of self-defining meas-
ures. For DU = nLulf, AU = nTutf, and c = lf/tf, the expression simplifies to 1 = 1. 
Like self-referencing measures, self-defining measures are also measured against 
themselves. Note also that removing the ratio nLu/nTu will give the scalar expres-
sion for an expanding volume with respect to an inertial frame. Finally, the ex-
pression in Equation (81) for Hubble’s constant (m/s with respect to the un-
iverse) combined with Equation (89) are, depending on the frame of reference, 
value-equivalent to each of the following three equalities, 

2Lu U
U si

Tu U

n DH c
n A

θ= = = .                   (90) 

Most notably, we now see that the repeated appearance of 2θsi is in fact also a 
form of Hubble’s constant defined with respect to the universe. The term shows 
up not only in Equation (87) as the system constant that incorporates the 
co-moving element of universal expansion, but in many other expressions such 
as the fundamental expression lfmf = 2θsitf, which relates length, mass, and time 
in their most simple form. The term shows up in the definition of Planck’s re-
duced constant ħ = 2θsilf from Equation (36) and Newton’s Gravitational con-
stant G = lfc3/2θsi from Equation (16). In short, the system constant is less a con-
stant of the universe and more a descriptive count ratio that serves as a conver-
sion metric between the local frame and the universe. With this broader under-
standing, the physical constants may be understood as a collection of measure-
ment ratios, each a variant of the system constant. 

3.11. Fundamental Properties of the Universe 

The fundamental expression lfmf = 2θsitf is a system definition that not only pro-
vides the foundation for how length, mass, and time interrelate within the sys-
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tem, but also defines both upper bounds and properties for the system. In this 
section, we present expressions that enable the calculation of some of those up-
per bounds to measurement. Upper bounds are important as they will allow us 
to calculate the visible, observable and total characteristics of our universe. 

In the same way that length frequency is an upper bound, we may resolve sys-
tem properties by multiplying the age of the universe AU and the corresponding 
radial system constant θsi (where AU corresponds to half of 2θsi) by the two sys-
tem frequencies and corresponding system count. With 174.3546 10UA = ×  
seconds [14], i.e., the current epoch, then 

17 60
44

1 14.3546 10 8.0775 10 units
5.39106 10T U f

f

n A t
t −= = × × = ×

×
,   (91) 

35
17 26

44

1.61620 104.3546 10 3.26239 4.2590 10 m
5.39106 10

f
U U si

f

l
R A

t
θ

−

−

×
= = × × × = ×

×
, (92) 

8
17 53

44

2.17643 104.3546 10 3.26239 5.7353 10 kg
5.39106 10

f
f U si

f

m
M A

t
θ

−

−

×
= = × × × = ×

×
. (93) 

Each expression is best understood as an observational bound, but may also 
be understood as a physical property where θsi is the radial system constant of a 
co-moving reference in the expansion beyond which measurement information 
cannot be distinguished for greater frequencies. For Mf, the fundamental mass of 
the universe is a scalar bound only in the present and does not reflect the size of 
the observable universe. Where the fundamental mass would theoretically define 
what mass can and cannot be observed, we must apply specific geometric prin-
ciples to account for the expansion, for limitations in the transmission of light and 
adjustments related to a skewed view of measurement from our self-referencing 
perspective to properly resolve visible and observable mass. 

Also note, where Mf is a function of mass frequency, the fundamental mass mf 
differs from the other measures as it is not the smallest measurable mass. Rather, 
mf is a composite of our understanding of lf and tf and therefore an important 
countable measure relative to the other measures. The ability to measure phe-
nomenon smaller than mf does not violate the mass frequency bound, but un-
derstanding how it constrains observable mass requires additional steps to be 
discussed in the next section. 

Conversely, the values nT and RU are scalar bounds; nT, for instance, is a count 
of time units elapsed, whereas RU is the co-moving radius that corresponds to 
that count. The radius RU = AUθsic and the dimensionless nature of the radial 
system constant θsi can be verified by starting with Equation (89), substituting in 
Equation (81), dividing by two to obtain the radius RU, and then multiplying AU 
by c to convert to SI units. 

One may have noticed the arbitrary introduction of θsi, the radial system con-
stant. This is an important system parameter that applies to most Informativity 
expressions and may be resolved from Equation (87). Without the radial system 
constant, the expression would represent a calculation applicable to a volume 
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expanding at the speed of light, but would not express the expansion we see in 
the universe, which requires a self-defining frame of reference. One might also 
consider applying the radial system constant to Equation (91) such that nT = 
AUθsi/tf. As 1/tf is a count and not a measure, the radial system constant is not 
applicable. 

Interpreting the units for θsi can be challenging as well. This aspect is dis-
cussed in Appendix E, but for now this consideration may be factored out. Given 
AU = RUtf/θsilf from Equation (92), then the fundamental mass is 

f U f f f
f U si si U

f si f f f

m R t m m
M A R

t l t l
θ θ

θ
= = = .             (94) 

Moreover, mf/lf is the last unaccounted for frequency bound. Reducing the 
fundamental mass expression into more familiar physical measures where the 
age of the universe is AU = nTtf in seconds and mf/tf = c3/G from Equation (31), 
then 

f f
f U si Tu f si Tu f si

f f

m m
M A n t n m

t t
θ θ θ= = = ,             (95) 

3
U si

f
A cM

G
θ

= .                       (96) 

The four ratios 1/tf, lf/tf, mf/tf, and mf/lf each describe an important property of 
our universe. Furthermore, Equation (96) is valid only because the measure of G 
is made macroscopically and as such corresponds to the proper value reflective 
of the Informativity differential. 

We may next resolve the volume of the universe VU using its radius RU from 
Equation (92), 

( )33 3 26 80 34 4 4π π π 4.2590 10 3.2360 10 m
3 3 3U UV r R= = = × = × .     (97) 

To resolve the corresponding fundamental mass density with respect to the 
universe using the expression ρf = Mf/VU, we substitute in the expression for vo-
lume and reduce with RU = AUθsic from Equation (92), where Mf = RUmf/lf from 
Equation (94), h = 4πθsilf from Equation (14) and 2 si f f fm l t cθ = =  from 
Equation (47) such that 

( )3 2 2

3 33 1
4 π 4π 4π

f f f f
f U

U f U U f U si f

M m m m
R

V l R R l A c l
ρ

θ

  
= = = =     

,      (98) 

( ) 2 2 2 2 2 32 2

3 3 6 6
24π

f f f
f

siU si U UU si si f

m m m
A c h A c h A c hA c l θθθ θ

ρ = = = = .       (99) 

With Planck’s constant adjusted for the Informativity differential from Equa-
tion (47) then the corresponding fundamental mass density is 

2 3 17 2 34

27

3

3

6 6
4.3546 10 299792458 6.62584 10

1.7723 10 kg m

f
UA c h

ρ × −

−

= =
× × × ×

= ×

,    (100) 
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In recognition of traditional density calculations, the fundamental mass den-
sity is not a value that has relevance to a mass density that we may observe. Note, 
we are taking a fraction of the total mass that exists in the universe and then di-
viding that by the total volume of the universe. While the result is inapplicable to 
experimental measure, the ratio fills an important void in some calculations. 

When working with self-referencing and self-defining phenomena we will 
find that knowing the mass, size and age of one or another framework can tell us 
nothing about the relationship between these two frameworks. Having expres-
sions that decisively describe that relation can be instrumental when we wish to 
translate measures between frameworks (i.e. calculate the volume of the universe 
where we can only measure the mass that can be seen). 

Lastly, we have not fully explored how units should be resolved in Informativ-
ity. Unit analysis is a property of the reference frame being used and can dra-
matically differ from the traditional assumptions one makes where all units are 
resolved as self-referencing measures. For a greater understanding of unit as-
signment where two frames of reference are at work in tandem, please refer to 
Appendix E where an example expression from this section is used to clarify the 
process. 

3.12. Dark Energy and Dark Mass 

On the topic of dark energy, several values for properties of the universe have 
been calculated and presented. The same may be accomplished to resolve the 
distributions of visible, observable and dark mass (that which is not observable) 
and an understanding of dark energy. These calculations have been possible with 
the ˄CDM model but such calculations have been met with several shortcomings 
such as “coincidence” and the cosmological constant. At the same time, argu-
ments presented by Karl Popper have also brought to our attention the possibil-
ity that ˄CDM as currently understood is built upon a foundation of conventio-
nalist stratagems, rendering it unfalsifiable [21]. This is not to say that ˄CDM 
does not provide for physically significant insight into several observed pheno-
mena, but does suggest that there is opportunity for new discoveries.  

To provide direction where several extended theories of gravity have had suc-
cess, Christian Corda presents a paper concisely demonstrating that the field of 
possible models may be reduced in relation to an understanding of gravitation 
with respect to GR. In his paper [22] this may be achieved where better mea-
surement data in the study of gravitational waves can be obtained. Through a 
concise analysis of interferometer response functions, classes of gravitational 
theories may be mitigated and even removed from consideration. 

Informativity provides a new opportunity that appears to avoid many of the 
aforementioned shortcomings and directly addresses several of the foundational 
issues mentioned. Notably, Informativity offers the opportunity to describe and 
resolve values for properties of phenomena we currently rely on ˄CDM to un-
derstand. For example, where mass distributions lack a physical marker defining 
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their relation (i.e. a fundamental mass), a distinct resolution of mass distribu-
tions is now possible. As well, Informativity is quantum in its presentation pro-
viding for expressions that are not bound in scope, valid for all measures in the 
physical regime. 

Before proceeding, we are introducing a new term, dark mass Mdkm, to distin-
guish physical characteristics that cross two domains. Dark energy is presently 
used sometimes in the context of a mass/energy representing a part of the total 
mass/energy of the universe. In other situations dark energy is used to discuss the 
energy associated with the expansion of the universe. These two properties are re-
lated, but they are best understood separately using their traditional definitions. 

With Equation (93) we have introduced the notion of mass frequency mf/tf as 
an important ratio that describes a measurement bound beyond which funda-
mental mass events can no longer be distinguished. The idea of mass frequency 
is that there is a maximum count of mass events that may be distinguished rela-
tive to a count of time events. As expressed in Equation (28) that count is 
1.85492 × 1043 units/s. 

Unlike the speed of light lf/tf, we may not use the scalar interpretation of mass 
frequency to resolve a specific boundary (i.e. visible, observable or dark mass). 
The relationship is complicated by our point of view and requires a translation 
between the self-referencing and self-defining measurement frameworks. 

We may overcome this challenge by approximating the mass density ρm of the 
universe as the product of the expression for critical density ρc and the mass dis-
tribution Mobs associated with observable mass. Although mass density is con-
tingent on the spatial curvature of the universe, based on observations of the 
CMB from the WMAP data, the curvature of space is measured to be close to 
zero. Hence, observable mass MO may be expressed as 

O U m U c obsM V V Mρ ρ= = .                   (101) 

We may now calculate the dark mass distribution Mdkm. Where we know the 
observable mass relative to the critical mass and we know the fundamental mass, 
we may take advantage of their relation to resolve the relative distribution of ob-
servable mass above the fundamental mass. The relation (Mobs − Mf)/Mf de-
scribes the relative distributions with respect to fundamental mass. 

Where ( ) 34 3 πU UV R= , where G = c3tf/mf from Equation (22), where RU/AU = 
θsic from Equation (92), and where the critical density of the universe ρc = 
Hf2/8πG is a function of the Hubble frequency from Equation (72), then 

( )
( )

1 1 1U m U si f f U m f U m f
dkm

f U si f UU si f f

V A m t V t V t cM
m A m RA m t

θ

θθ

ρ ρ ρ−
= = − = − ,  (102) 

23 4π4π
1 1 1

3 3
f f f U obs fU

dkm U m c obs c
f U f U f f

t t l R M lRcM V M
m R m R t m

ρ ρ ρ= − = − = − , (103) 

2 2 2 2
2

2

3 4π 11 1 1
8π 3 2 2

f U obs f U obs f U obs f
dkm f

f f fU

H R M l R M l R M l
M H

G m Gm GmA
= − = − = − ,  (104) 
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2
2 2 2 2

2 3

11 1 1
2 2 2

obs f obs f obs f fU
dkm si si

f f fU f

M l M l M l mRM c c
Gm m G mA c t

θ θ= − = − = − ,   (105) 

2

1
2
si

dkm obsM M θ
= − .                     (106) 

Next, given that the sum of the observable Mobs and dark Mdkm mass distribu-
tions must equal one, i.e. the two measures account for all mass in the universe, 
then 

22 2dkm obs siM M θ+ = ,                    (107) 

1dkm obsM M =+ .                      (108) 

The respective distributions are then 
2

2

2
68.3624%

2
si

dkm
si

M θ
θ

−
= =

+
,                 (109) 

2

4 31.6376%
2obs

si

M
θ

= =
+

.                  (110) 

To complete our understanding of these distributions we will further refine 
our understanding of Mobs. Presenting vU as the self-defining rate of expansion 
between the end points of DU (twice the radial velocity) we may write Equation 
(87) in SI units as DU = 2θsicAU such that 

( )0 10 1

0 1 0 1

22 2
2 m ssi U Usi U si U

U si
U U U U

c A AcA cAv c
A A A A

θθ θ
θ

−−
= = =

− −
.      (111) 

Note that Hubble’s constant which is also understood as a measure of expan-
sion is defined with respect to a self-referencing locally defined fixed distance 
with respect to elapsed time. Defined as such, the rate of expansion is not con-
stant, but decreases with the passage of time. Conversely universal expansion 
with respect to the self-defining frame is fixed. 

Where vU = 2θsic m/s is the velocity of twice the radial expansion, the expres-
sion may be expressed as a percentage of a total. We construct the ratio by first 
noting that the self-defining total distribution is Mtot = 100% which is Mtot = 1. 
Similarly, velocity of twice the radial expansion vU is the ratio of the observable 
to visible distributions Mobs/Mvis with respect to the total. Thus where the locally 
defined speed of the expansion at the outer edge of the universe is the speed of 
light vU = c, then the visible mass distribution is 

2obs
U si

vis tot

Mv c c
M M

θ= = ,                   (112) 

1 4.84884%
2 2

obs obs
vis

si tot si

M MM
Mθ θ

= = = .             (113) 

This is the mass distribution that we may measure in the present (i.e. what we 
can see). Likewise, the visible mass MV in kilograms as a function of the observa-
ble MO and universal MU mass is 
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531 1.47992 10 kg
2

O
V

si U

MM
Mθ

= = × .              (114) 

Recognizing that an inertial frame may observe only the expansion adjusted 
percentage of the observable mass with respect to the total, we have taken the 
distribution ratio and applied the speed of light constraint to resolve the visible 
mass distribution as a property of the self-defining frame.  

Finally, we may subtract the visible from the observable mass to resolve the 
unobserved mass Muobs that will be observed but has not yet reached the observ-
er. 

63.3624 4.84884 26.78876%uobs obs visM M M= − = − = .      (115) 

As such, we have resolved that mass will fall into one of the following distri-
butions: 68.3624% dark mass, 31.6376% observable which includes 4.84884% 
visible and 26.78876% unobserved (each with respect to the whole). The values 
match modern calculations where mass/energy distributions of 68.3% dark 
energy, 31.6% observable (visible + dark matter + 0.1% neutrinos) which in-
cludes 4.8% visible and 26.8% dark matter [23] have been resolved. 

Naturally we are compelled to ask why the dark energy distribution would 
match dark mass and the dark matter distribution would match the difference 
between observable and visible. The terms identifying these phenomena have 
been attributed characteristics that are not all entirely related to a common 
phenomenon. For example, properties of gravitational attraction within galaxies 
with respect to rotational characteristics have been associated with the term dark 
matter. But, the energy properties of these distributions are related to the energy 
associated with each phenomenon. While modern theory has identified the dis-
tribution values, it is a deeper understanding of their geometric origins that 
needs assessment. 

Also relevant is a study of the CMB published in 2015 [24] which presented 
compelling data that dark matter is fine dust and can be measured by studying 
its gravitational effects on galaxies. To integrate the results of this research, we 
combine dark matter with visible matter and find a mass percentage of 31.6% 
associated with the observable distribution, which does match our expectation. 

For historical interest, an expression that relates visible, observable and total 
mass may be organized in the form 

2obs obs
si

vis tot vis

M M
M M M

θ= = .                   (116) 

where Mtot = 1 (100% of the mass) then we find that dividing the observable dis-
tribution by the visible distribution gives us 2θsi. It is interesting in how many 
ways the system constant makes itself accessible, a straight-forward ratio of two 
measures at the center of a long search to understand dark energy. 

Of particular interest regards the invariant nature of these distributions. To 
demonstrate, first consider the fundamental expression from Equation (47). 
Presented in the form θsi = mfc/2 we recognize invariance in θsi where it is also 
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agreed that the speed of light is a constant and our understanding of fundamen-
tal mass does not change. The possibility of a variant measure of mf is possible if 
balanced by an equal change in θsi. But there are serious conflicts if such a model 
is entertained. For one, if we look to Equation (31) which expresses gravity as 

( )( )3 3
f f f fG l t t m= , then any change in mf would also show a corresponding 

change in gravity. Similarly, where E = 2θsic from Equation (49) we see that any 
change in θsi would also result in a change of energy in a system. Thus far, there 
is no support for a change in gravity over time or a violation of conservation of 
momentum. Current observations support the conclusion that θsi and mf are in-
variant. Where θsi is the only non-integer value in the expressions that describe 
mass distribution (i.e. Equations ((109), (110)), we may state that the distribu-
tions are also invariant. 

The relation between the two frameworks may now be resolved with the fol-
lowing equality, each an expression for dark mass, 

1 obs fobs

tot f

M MM
M M

−
− = ,                   (117) 

( )2 tot f obs tot fM M M M M= + .                (118) 

Presented in Figure 3 we can demonstrate the relation and with that gain a 
better understanding of dark mass. For instance, if we consider the case where 
the total mass equals the fundamental mass, then the expression reduces to 

( )2 f f obs f fM M M M M= + ,                 (119) 

2 2f f f obsM M M M= ,                    (120) 

f obsM M= .                        (121) 

As such, the visible, observable and total mass are value equivalent and there 
is no dark mass. Notably, the expression demonstrates there is no affinity for 
different forms of mass. The distributions are a geometric consequence of the 
total in relation to the fundamental. Where a total greater than the fundamental 
will present two mass distributions, one observable and one not, we find no  

 

 
Figure 3. Relative measure of mass. 
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support for a physical difference between the two. Thus, dark mass is also mass 
that cannot be seen because it is in excess of the mass frequency constraint with 
respect to the self-referencing frame.  

We may resolve the critical density ρc of the universe by taking the Friedmann 
equations (the 00 component of Einstein’s field equations) and set the norma-
lized spatial curvature, k, equal to zero such that 

( )2182
27 3

3 2.2964 103
9.4316 10 kg m

8π 8π
f

c

H
G G

ρ
−

−
×

= = = × ,      (122) 

to estimate the mass density associated with each distribution: 
27 27 3

/ 9.4316 10 0.316376 2.9839 10 kg mm obs c obsMρ ρ= − −= × × = × ,  (123) 
27 27 3

/ 9.4316 10 0.683624 6.4477 10 kg mm dkm c dkmMρ ρ= − −= × × = × .  (124) 

Solving for observable mass MO and dark mass MD we find 
80 27 53

/ 3.2360 10 2.9839 10 9.6561 10 kgO U m obsM V ρ= = −× × × = × ,   (125) 
80 27 54

/ 3.2360 10 6.4477 10 2.0865 10 kgD U m dkmM V ρ= = −× × × = × .  (126) 

To place oneself contextually, note that these values are intrinsic properties of 
our universe, outcomes of the logical relationships established and described in 
this paper as expressed by the fundamental expression. When compared to 
measurement data, these values correspond to what we see. 

3.13. Mass Accretion 

Thus far, the expressions of Informativity have been consistent with modern 
theory. But, drawn between the expressions is an unexpected result, a universe 
with increasing mass. In this section we will describe the issue. In the next sec-
tion we will describe how the result presents a complete story of inflation, the 
resulting CMB and the expansion that follows. And finally in Section 3.15, we 
will calculate the age, energy, density and temperature of the CMB, those calcu-
lations matching our best observations to four significant digits. 

As noted in Equations ((109), (110)) the observable and dark mass distribu-
tions are invariant. Specifically, the dark mass distribution as presented in Equa-
tion (117) is 

obs f
dkm

f

M M
M

M
−

= .                     (127) 

But, we also know from Equation (95) that the fundamental mass Mf increases 
with time. 

f Tu f siM n m θ= .                      (128) 

In short, where the dark mass distribution is invariant, the fundamental mass 
cannot increase unless the observable and thus the total mass of the universe are 
also increasing. The conflict may be avoided if either θsi or mf offset the increase 
in the count of fundamental units of time nTu, but as has been argued following 
Equation (116) such a proposition presents a world where gravity changes over 
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time and momentum is not conserved. There is no support for either of these 
effects. The mass of the universe must be increasing. 

To gain a greater understanding of mass accretion, let us solve for the total 
mass using the observable mass as resolved from Equation (127), 

( )1obs f dkmM M M= + .                   (129) 

Using Equation (118) to solve for total mass then 

( )2 tot f obs tot fM M M M M= + ,                (130) 

( )2tot f obs f obsM M M M M− = ,                (131) 

( )
( )

( )1 1
2 2 1 1

f obs f f dkm f dkm
tot

f obs f f dkm dkm

M M M M M M M
M

M M M M M M
+ +

= = =
− − + −

,    (132) 

( )1 2 2 1
1
f dkm obs

tot f f
dkm obs obs

M M MM M M
M M M

+  −
= = = − 

−  
,      (133) 

2

2

22 1 14 2
2

si
tot Tu f Tu f

si

si siM n m n m θθ θ

θ

 
   + = − = − 
   
 + 

.        (134) 

where the total mass of the universe may be expressed such that Mtot = nMumf, 
then a formal definition for system mass accretion Macr may be expressed as 

2 2
1 17.3611 units unit

2
Mu si

acr si f f
Tu

nM m t
n

θ
θ

 +
= = − = 

 
,      (135) 

367.00888 10 kg sfMu
acr

Tu f

mnM
n t

= = × .             (136) 

Finally, where mass accretion occurs at a constant rate then the volume of the 
universe is accelerating at a volumetric flow rate of 

( ) 3 3 3 33
3 3 2 3ππ 44 3 4

3 3
π m s

Tu f Tu f

si Tu fUU
si U

U

c n tRV
t n t n t

V c A
A

θ
θ= =

∆
= =

∆
.      (137) 

This tells us that mass accretion does not demonstrate a linear relation to 
space.  

3.14. Quantum Inflation 

Inflation is a predicted consequence of a referential constraint that is unique to 
the early universe. The conditions that lead to inflation are specific to limitations 
in distance measurement as defined by the Pythagorean Theorem. Where a 
frame of reference is confined to an initial size equal to one fundamental unit of 
length (i.e. where ( )1 22 21c b= +  rounds to a whole-unit value of 1), the ability 
to reference a point in space becomes an instrumental factor in its expansion, 
constraining the spatial frame while accreting mass within. As such, an inflatio-
nary epoch characterized by a quantum decelerative process transpires until 
points of reference may occur outside of the existing referential framework (i.e. 
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where ( )1 22 21c b= +  rounds up to 2) at which time the inflationary epoch 
ceases and the universe expands at the speed of light releasing the mass accreted 
within as CMB. 

Informativity describes an inflationary period that is distinctly different than 
that of modern theory as well as previously entertained models such as steady 
state theory. For example, whereas the steady state model has mass accreting 
with a linear relation to space, Informativity does not. Most importantly, Infor-
mativity allows for verifiable calculations of the age, size, density and tempera-
ture of the CMB. Informativity also has significant differences from modern 
theory. Notably, inflation precedes the Big Bang. The rate of expansion during 
inflation is very slow. And, at the conclusion of inflation mass/energy initially 
remains isotropic with respect to the expansion of space. For these reasons, we 
will distinguish this period with the term quantum inflation. 

Before we present expressions describing quantum inflation, let us first gain a 
better understanding of the mass accretion that is occurring during the quantum 
inflationary epoch. To do so, we will need a formal understanding of the upper 
bound to mass density in terms of fundamental units. Using escape velocity ve 
where 

1 22
e

GMv
r

 =  
 

.                      (138) 

we substitute the speed of light c for ve, distance as a count of lf, r = nLlf, mass as 
a count of mf, M = nMmf, and the gravitational constant as defined in Equation 
(31), G = tfc3/mf. 

1 2 1 23 322 f M f
M f

f L f

t c n t c
c n m

r m n l
   

= =      
   

,             (139) 

3 3 2
2 2 2 2M f M M

L f L L

n t c n c n cc
n l n c n

= = = ,               (140) 

2L Mn n= .                        (141) 

Ignoring spatial curvature, we may then say that the upper bound to mass 
density may be characterized as a region of linear measure where there are at 
most two units of mf for each unit of lf. In terms of three dimensions then there 
is a bound of 2 2 2 8× × =  units of mf per cubic unit of lf such that mass has an 
upper density bound of 

97 3
38 4.12429 10 kg mf

f

m
l

ρ = = × .               (142) 

As defined by the fundamental expression, lfmf = 2θsitf, a greater count of mf 
with respect to lf would present a relationship between lf and tf that is greater 
than the speed of light. This is not observed and as such ordinary baryonic mat-
ter may not exist with a greater density. 

Using Equation (134) for total mass where nT represents a count of tf corres-
ponding to time elapsed since t0, 34 3πU UV R=  for volume and Equation (92) 
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RU = θsiAUc for the radius of the universe in SI units, then the mass/energy den-
sity of the universe may be expressed as 

( )

2 2

3
3 3 3 3 3 3 2 2 3

2 23 1 3 1
2 2

kg m
4 3 π 4π 4π

si si
T f si f

tot tot

U U si f
U

T si T f

n m m
M M
V R c n t c n t

θ θθ

θ
ρ

θ

   + +
− −   

   = == = . (143) 

The next natural step might be to solve for time elapsed until the energy den-
sity of the universe falls below the critical density of mass. Setting ρU equal to the 
upper bound for mass density ρ and solving for the time elapsed from t0, then 

2

2
2

23 1
2

32π

si

T
si

n

θ

θ

 +
− 

 = ,                     (144) 

1 22 23 1
32π 2

f si

si

t
t θ

θ
  +

−     
= .                 (145) 

The calculation is a novelty in that it ignores an important principle of 
self-defining referential systems. To this point there exists no frame of reference 
external to the outer edge of the universe. Where spatial referencing is defined in 
terms of the Pythagorean Theorem, the ability to reference a radial point outside 
of a whole-unit count of lf is constrained. We will need to modify the expression 
to take into account the constraint. By example, we may calculate the rate of ex-
pansion at one second. 

We begin with the fundamental expression in expanded form as described in 
Equation (70). Note, we’ve added the prefix u to denote that the expression is a 
self-defining representation of the universe as defined with respect to itself. We 
then organize the expression into a form that more similarly corresponds to Eq-
uation (85). 

2Lu f si

Tu f Mu f

n l
n t n m

θ
= .                      (146) 

As such, the expression describes a universe that expands at the speed of light. 
To appropriately modify the expression, we must note a differing count of lf 
other than that afforded by the relation defined by c = lf/tf. To avoid confusion 
we will use the term ~nLu to represent the count of length units during the 
quantum inflationary epoch. 

~ 2Lu f si

Tu f Mu f

n l
n t n m

θ
= .                     (147) 

where G = lfc3/2θsi from Equation (31), where RU = AUθsic from Equation (92), 
where 23 8πc fH Gρ =  from Equation (122) and where we have elected to re-
solve the rate of quantum inflationary expansion vi at AU = 1 second, then 

( ) 3 3 3

~ 2 2 2 2
4 3 π

Lu f si si si si

Tu f Mu f U U c si U c
i

n l
n t n m M

v
V c A

θ θ θ θ
ρ ρθ

= = = == ,      (148) 
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3

3 2 3 3 2 3 2 3 2 3 2

3 1 3
2

π
2π 32

8 4
π

f
i

c sisi U si U f si U f

l cGv
c A c A H c A H θθ θ θρ

= = = ,      (149) 

2 37
2 3 3 3 3 3

2 2 21 9.30931 10 m sf f f
i U

f si U si U si U

l l l
v A

H A A Aθ θ θ
−= = = = × .      (150) 

As AU increases in the denominator the expansion decelerates. But, as we will 
demonstrate, that is not what brings quantum inflation to an end. For that, we 
must return to the definition of fundamental length. 

3.15. Cosmic Microwave Background 

Taking the integral of the velocity expression describing quantum inflation, we 
may obtain a corresponding expression for the radius of the universe, 

( )
3 3

2 2 lnf U f
U

si U si

l A l
R

Aθ θ
= =∫ .                  (151) 

Note that the radius is negative until AU is equal or greater than one second. A 
better term for the radial distance during this period might be “undefined”, but 
the result is best understood as a less refined description of “uncertainty”. Also 
note that for 1.09833 years the radius is less than the fundamental measure for 
length. That said, mass accretion occurs irrespective of the lack of a measurable 
spatial frame (i.e. a time when all length measure is defined against the refer-
ence). The quantum inflationary epoch is characterized as occurring no earlier 
than t = 1 second and ceases precisely when RU reaches the square root of three 
units of lf. It should also be noted that t = 1 is not coincidental or interesting. 
The value is an artificial product of our established measurement nomenclature. 

Let us now investigate the importance of measurement counts and why the 
square root of three is so instrumental in quantum inflation. Notably, the value 
is significant because the phenomenon of length is a relatively defined quantized 
geometric construct. Until the referential system can define a count of lf greater 
than the base reference, there exists no means for mass to accrete outside of uni-
ty. Where relative distance may be expressed by the Pythagorean Theorem, it 
follows that a system with a base side a equal to 1 and a distance side b equal to 1 
describes a relative distance defined against the base. In other words, the net 
distance (i.e. the hypotenuse) of 1.41421 units of lf rounds down to one lf, a dis-
tance phenomenon defined against itself. 

Where the system may be characterized with a base side a equal to 1 and a 
greater distance for side b where the Pythagorean Theorem resolves a hypote-
nuse equal to the 3 fl , 1.73205 units of lf (2.79934 × 10−35 m), then the count of 
lf rounds up to 2. At this precise moment, the referential system allows for the 
accretion of matter outside of unity causing the quantum inflationary period to 
end and allowing the universe to expand at the speed of light. The universe is 
born! 

As a side note, all measures of relative distance greater than the 3 fl  will 
round to the closest whole unit count of lf, which will be up or down. The varia-
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ble outcome of distance measurement precludes a black hole from being truly 
black. With the black hole surface always changing, we find that there will al-
ways be some loss of radiation at the surface. The effect is typically understood 
as Hawking radiation which is built on the foundation of the trans-Planckian 
problem [25]. Some have argued that the argument lacks physical support [26] 
which is now provided in Equation (57). In the calculations that follow, Infor-
mativity further supports the argument with observationally supported values 
for the age, quantity, density and temperature of the CMB as a consequence of 
the quantized nature of length measurement. 

We calculate the self-defining fundamental age of the universe at this particu-
lar moment, 3U fR l= , by solving for AU from the expression above such that 

33 2 13e 1.14652 10 ssi
UA θ= = × .                (152) 

Thus, at AU = 363,309 years, the universe reached a state where the spatial ref-
erence frame was no longer defined against itself. Most interesting, this age is 
also distinguished in modern theory whereby recombination appears to have 
occurred at approximately 378,000 years.  

In the same way that the fundamental mass serves in the capacity of a conver-
sion metric, the self-referencing age must also be resolved. As described in Equ-
ation (92) where the radius of the universe is expanding at RU = AUθsic, then the 
difference between the self-referencing age As-ref and the self-defining age AU is a 
function of the spatial frame in three dimensions (i.e. volume where V = 
(4/3)πR3) such that 

( ) ( )
( ) ( )

3
-

3

4 3 π
2

4 3 π
s ref si

si
U si

A c

A c

θ
θ

θ
= ,                  (153) 

( )1 3 13
- 2 2.14241 10 ss ref si UA Aθ= = × .             (154) 

This corresponds to a referential age of 678,889 years. The expression is rep-
resentative of time in the local frame at the conclusion of quantum inflation and 
the birth of our universe’s spatial reference frame. 

The corresponding mass/energy of the universe at As-ref follows such that 
2

502
1 1.50159 10 kg

2
si

tot Tu f siM n m θ
θ

 +
= − = × 

 
.         (155) 

Given the constraints of Equation (142) where accreted mass may not have a 
density of more than 3 97 38 10 kg mf fm l = , we find that mass which is con-
fined to unity, i.e. 31 fl , may not exist in ordinary baryonic form during quantum 
inflation. At nT = 1 mass density begins at 10145 kg/m3 and then increases as the 
rate of mass accretion is greater than the rate of quantum expansion. The most 
likely candidate form for mass during this period is ER. The radiation is isotrop-
ic at the conclusion of quantum inflation. We may solve for the resulting CMB 
energy density by dividing the total mass-equivalent of the CMB Mtot by the vo-
lume of the universe today VU (converted to joules per cubic meter by multiply-
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ing by c2) such that 
2

14 34.17041 10 J mtot

U

M c
V

ρ −= = × .              (156) 

Before resolving the corresponding temperature, it should be noted that the 
radiation constant “a” should be resolved using Planck’s adjusted constant from 
Equation (36) and Boltzmann’s constant where 231.3807 10k −= × . Using the 
present day volume of the universe as presented in Equation (97), then the total 
CMB energy radiated as described with respect to blackbody radiation (i.e. the 
Stefan-Boltzmann law) is 

3 4
16 3 4

3 3

4 8π 7.56685 10 J m K
15

ka
c c h
σ −= = = × ⋅ .          (157) 

It follows that the temperature T of the CMB is then 
1 4

2.72468 KT
a
ρ = = 

 
.                   (158) 

A study of temperature measurements of the CMB literature was published by 
D.J. Fixsen [27] in November of 2009. He found that the best measure of tem-
perature corresponded to a value of 2.72548 ± 0.00057 K. The study supports the 
Informativity expression to four significant digits. 

It should also be noted that the Hubble constant as presented in Equations 
((71), (72)) should be adjusted for quantum inflation in order to accurately re-
flect the observed expansion. Because the age of the universe is known only to a 
precision of 106 years and the time elapsed during the quantum inflationary 
epoch is a value of 105 years, the difference is still less than the least significant 
digit for the age estimate. As such, the Hubble value presented in Equation (71) 
is not affected. 

3.16. Support for Mass Accretion 

While the process of expansion differs from modern thought, there are no con-
flicts with observational data. Rather, where modern theory has had mitigated 
success, Informativity has resolved a straight-forward understanding of several 
phenomena: 
• Mass distribution that is both isotropic and homogeneous 
• No center where mass appears to originate 
• Significant correspondence between stellar and universal expansion 
• An understanding of the expansion of the universe (dark energy) 
• Calculation of the respective visible, observable and dark mass distributions 
• An understanding of how quantum inflation began and why it ended 
• Calculation of the age, quantity, density and temperature of the CMB 

Perhaps the most notable discipline not yet explored regards nucleosynthesis, 
a model that presents an explanation of the relative distributions of observed 
hydrogen and helium. While Informativity is consistent and supported by sever-
al measurement studies, a study of nucleosynthesis will not be explored at this 
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time. That said, there are physically significant expressions in Informativity that 
present evidence that the distributions on which modern nucleosynthesis is built 
need reevaluation. 

Firstly, dark mass is also matter that cannot be observed as a consequence of 
the speed of light and mass distributions a function of mass frequency. Where 
support for a universal mass of 3.05211 × 1054 kg (the sum of Equations ((125) 
and (126))) is significantly greater than current thought, the difference may af-
fect some nucleosynthesis calculations.  

More importantly, equation (118) argues that there is no affinity for a specific 
division of observable and unobserved mass. The resulting implication is 
straight-forward; modern calculations of the relative distributions derive from 
an initial mass/energy of the universe that is present at t0, but do not consider 
that the initial mass also includes hydrogen and helium in the region recognized 
as dark mass nor that mass has accreted evenly over time. The expected mass 
distributions and respective quantities will not match. 

Lastly, with respect to quantum theory where it is interpreted that a vacuum is 
not empty space, there is now data that shows that quantum fluctuations do 
generate particles which may then decay. In 2015 a paper detailing the detection 
of quantum fluctuations in a vacuum was presented describing the first measure 
of this prediction [28]. While the experiment was designed to detect the decay of 
particles in a vacuum, there was no specific information indicating that all par-
ticles decay. Informativity supports the possibility that quantum fluctuations 
represent a phenomenon that may also describe the underlying processes that 
give rise to mass accretion. 

3.17. Reducing a Physical Expression Back to the Fundamental 
Expression 

The Informativity conjecture is that every physical law is an expression of, and 
therefore can be reduced to, the fundamental expression. We have used this 
principle as a basis to explain dark energy and to resolve several properties of 
our universe. In this example, we demonstrate this by taking the fundamental 
mass, which we may use to resolve the observable and non-observable mass dis-
tributions, and reduce it back to the fundamental expression. 

Where Mf is the fundamental mass of the universe in kilograms, VU the vo-
lume in cubic meters, RU the radius in meters, and ρf the fundamental mass den-
sity—an estimate based on the product of observed mass as a percentage and the 
critical density of the universe—then  

f U fM V ρ= .                       (159) 

We may then reduce the expression where ( ) 34 3 πU UV R= , where ħ = h/2π, 
where ħ = 2lfθsi from Equation (36) and where expressions from Equations ((92), 
(93) and (100)) are 

f
U U si

f

l
R A

t
θ= ,                      (160) 
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f
f U si

f

m
M A

t
θ= ,                      (161) 

2 3

6
f

UA c h
ρ = ,                       (162) 

then 

3 3 3 3 3
2 3 2 3 2 3

4 6 8π 8ππ
3f U f U U U si

U U U

M V R R A c
A c h A c h A c h

θρ= = = = ,      (163) 

substituting for Mf and cancelling terms yields 
3 3 2

3 4 4 22π 4
2

f U si U si U si
U si U si

f f si f

m A A AA A
t h l l

θ θ θ
θ θ

θ
= = = =



,        (164) 

2f f si fl m tθ= .                       (165) 

Hence, the expression Mf = VUρf is a derivative representation of the funda-
mental expression.  

The lack of a formal expression that determines system laws and properties 
leads to questions that are in hindsight meaningless, such as what exists outside 
of the universe. In the context of a logical construct, such questions can now be 
more clearly defined. In the same way that the maximum speed is c = lf/tf and the 
system volume is ( ) 34 3 πU UV R= , when applying expressions that describe 
physical phenomena we find that each is an outcome of the fundamental expres-
sion. To ask what is outside of the reference system is meaningless because there 
is no means to define phenomena outside of a background independent system 
of relatively defined measures. Such limits, though, may differ with respect to a 
self-defining framework and/or offer the possibility that the fundamental meas-
ures are inherited from a multi-verse. 

4. Discussion 

Investigations of the scalar constant S, that is, θsi, are central to understanding 
Informativity. With a physical correlation to θsi, we may resolve a distance-specific 
expression for Planck’s constant, build fundamental expressions for length, mass, 
and time and equate Informativity to Planck’s formulations to realize a new un-
ifying expression. The foundations of Planck’s formulations and Informativity 
have little in common, but each model may be used to resolve the fundamental 
measures. The defining difference and advantage the Informativity approach of-
fers are that each term carries a grounded physical correlation. The fundamental 
measures of Informativity, as such, are not a theoretical construct. 

Much of what has been presented strongly focuses on the idea of fundamental 
measures as a means to expressing descriptions of nature. It is conjectured that 
fundamental measures are the best-suited means to understand nature, but it 
may equally be noted that the translation of measurement to such a unit system 
is no more significant than factoring or scaling an expression. The underlying 
structure that makes such a scaling uniformly convenient is expressly neither a 
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phenomenon which may be directly measured nor a requirement to under-
standing the expressions of Informativity. 

A likewise and equally notable construct of the presentation is the incorpora-
tion of non-dimensionalization. While an important step in exposing an under-
standing of θsi, non-dimensionalization in itself is not a prerequisite to Informa-
tivity. There are other approaches that may be used to achieve the same results. 
The approach taken is intentional as a precursor to breaking the bonds of a 
straight-forward refactoring of the Planck expressions. The approach also ex-
poses a novel way of understanding gravity from an alternative geometric pers-
pective. While no physical evidence is specifically cited, if evidence were to be 
found pointing to an underlying spatial fabric that is both logical and quantized, 
then this approach would dictate that gravity is an inevitable byproduct of 
whole-unit quantization. 

To all of this, we build a foundation with geometric interpretations that de-
scribe light and matter in simple terms of a radius and circumference of a circle. 
With QLf, r, c3, and G used to describe gravity, we find that the scalar constant S 
is QLfrc3/G, which is also ħ/2lf. Moreover, we find that 2π 2π fC r l= =  com-
pared with the arc length set off by θsi precisely describes the minor arc of that 
circle in terms of angular measure or momentum. Where E = mc2 and E = nhv, 
we also find that a fundamental measure of mass and a photon are separated in 
energy precisely by a factor of 2π. With this, in the analysis of Heisenberg’s un-
certainty principle, we resolve that certainty is defined relative to one significant 
measure, lf.  

Informativity has also allowed us to explore how certain properties of our un-
iverse are expressed and constrained by the relations they obey, such as the 
speed of light (the length frequency), mass and time frequency, and how G is a 
space-time composite of these frequencies. We have explored how these rela-
tions prescribe frames of reference that in turn prescribe an understanding of 
space as expanding in a precise and consistent fashion with elapsed time. That 
expansion is not only required to be outward but isotropic and homogeneous. 

Also noteworthy is the observation that physical constants are variations of 
the fundamental expression, lfmf = 2θsitf. Whether that is the gravitational con-
stant, Planck’s reduced constant or Hubble’s constant, there exists a foundation 
of understanding that these values are convenient arrangements of the funda-
mental measures as defined by the fundamental expression relative to the system 
constant 2θsi. The observation is expanded to include more general expressions 
by taking the expression for the fundamental mass of the universe and reducing 
it back to the fundamental expression. 

Perhaps one of the most significant discoveries is not that our expanding un-
iverse is a phenomenon that can be expressed as a measurement bound, but that 
phenomena have measurement bounds. Keeping in mind that length, mass, and 
time are related and relatively defined, to understand observable mass as a func-
tion of mass frequency is as valid as to say that the age of the universe is an in-
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creasing upper bound constrained by being related to length frequency. The 
conjecture is a mathematical equivalence that offers no frequency affinity. On 
such a foundation, it is possible that the apparent age of the universe is a fre-
quency bound, that there exists a multi-verse that extends indefinitely in time, 
and that the phenomena we observe are products of frequency bounds of the 
multi-verse, not the universe. Nevertheless, a proof of this conjecture is an open 
problem for future investigation. 

In conclusion, note the following tests of Informativity. 

4.1. Measurements of Predicted Values 

The measure for the signal and idler θsi is so prevalent in Informativity that it 
may have been taken to be a fundamental constant of nature. This is not a role 
that is necessarily established; θsi is a prediction of this model that does not arise 
until after Equation (19) where it is introduced. As a matter of clarification, θsi is 
a derived value based on existing expressions that describe gravity and support-
ing evidence such as Planck’s understanding of fundamental measures. In this 
light, θsi is a predicted radian measure of particular importance to our under-
standing of light. The reverse argument may also be made, that our knowledge 
of θsi allows us to derive an expression for gravity. However, both arguments 
cannot be made simultaneously. Where one phenomenon is understood, the 
other must be an outcome. For this reason, an argument is put forward that 
leads to verifiable expressions of physical phenomena. 

Shwartz and Harris [5] reported angular measures needed to entangle photons 
in pure Bell states based on their measure of si s iθ θ θ= =  exactly equal to that 
predicted by Informativity. Their model conforms to their observational data 
from nonlinear X-ray optics experiments, which provides measures of relative 
angular precision to 10−5 radians. Measurements with accuracies of up to 10−6 
radians will be possible in 2017 at the European X-ray Free Electron Laser facili-
ties (XFEL) in Hamburg, Germany. 

4.2. Measurements of Gravitational Lensing 

There are several good examples of gravitational lensing within the universe, but 
for the purposes of Informativity, the best measure of this effect is relative to the 
Sun. The issue with other targets is the considerable uncertainty in distance in 
relation to the Informativity differential effect. In general, if accurate measures 
are needed to be resolved, our Sun would most likely be the backdrop to such 
measurements. 

To provide context, we present the effect as a difference from GR in the def-
lection of light grazing our Sun. With θ the angle of deflection, r and M the ra-
dius and mass, G the gravitational constant, and c the speed of light, then 

6
2 2 2

4 4 8.5 10 radiansGM G rM
rc r c

θ −= = = × .            (166) 

We see that measuring the effects of Informativity only requires that we are 
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able to detect the difference between Newton’s expression G/r2 and the Informa-
tivity expression QLfc3/rθsi and then use that to solve for the radian difference 
between GR and Informativity, 

( )33
12

2 2 2

44 6.6 10 radianssi LfLf

si si

M G Q rcQ cG rM
rr c rc

θ
θ

θ θ
−

− 
∆ = − = = ×  

 
.   (167) 

The effect resolves to six orders in magnitude less than the effects of GR. A 
search through existing data does not show precision that would reveal this ef-
fect, but with future efforts the difference may be resolved. 

4.3. Measurements of Universal Expansion 

A measure of an expanding space has particular value as it can greatly assist in 
understanding the difference between the expansion of space and the expansion 
of galaxies away from one another with respect to space, two distinct effects that 
do not have a specific correlation. Moreover, such an experiment would confirm 
that the expansion is a phenomenon that also occurs in the local frame and not a 
quality that appears only on a cosmological scale. In addition, where such mea-
surements show no effects related to Special Relativity, the experiment supports 
the idea that this is a geometric property of space and not a property of the iner-
tial frame. 

Specifically, space is not a tangible, measurable phenomenon. Rather, the 
process of measurement is geometric in origin. Furthermore, the reference sys-
tem against which everything is defined, the fundamental expression, consists of 
measurement counts that change with elapsed time and therefore change our 
understanding of length. 

The expansion of the universe in the local frame is not as small as one might 
anticipate. Using Equation (72) as a starting point, we may resolve the expansion 
between Earth and a satellite in the same Earth orbit on the other side of the sun. 
With the expansion of space, the trip distance Earth-Satdist, twice the average 
distance d between Earth and Sun ( 9 92 1.496 10 2.992 10 m× × = × ) [14] increases 
at a rate Hd. The displacement D is then 

18 9 9- 2.2964 10 2.992 10 m 6.871 10 m sd f distH H Earth Sat − −= = × × × = × , (168) 
9

9 8- 2.992 106.871 10 6.857 10 m
299792458

dist
d

Earth SatD H
c

− −×
= = × = × .   (169) 

In other words, excluding the effects of gravity, the distance between the Earth 
and the satellite increases by 69 nm as a result of universal expansion during the 
trip. 

4.4. The System Constant and Its Effect on Mass Distribution 

At the center of Informativity is the observation that θsi = 3.26239 radians from 
Equation (33) is a measure correlated with the polarization of an electric field 
with respect to the scattering plane needed to create quantum entanglement of 
X-rays in specific Bell states. The measure may also be correlated with the  
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Table 5. Distribution of mass in the universe respective of mass frequency found. 

Mass Distribution 
Radial System Constant 

θsi = 3.26239 θsi = 3.26250 

Mobs: Observable Mass 31.6376% 31.6358% 

Mdkm: Non-observable Mass (dark mass) 68.3624% 68.3642% 

 
momentum of half a fundamental measure of mass. Evidence has been presented 
that shows θsi conforms to the Informativity interpretation whereas estimates 
based on the standard model interpretation of Planck’s reduced constant suggest 
a value of θsi = 3.26250 kg m/s from Equation (34). 

Fortunately, there are several tests that bring a greater understanding of θsi. As 
resolved in Equations ((109) and (110)) and presented in Table 5, the value of θsi 
has a significant effect on mass distribution. An analysis of the distributions to 
two orders of magnitude greater than current measurements decidedly favors 
only one of the interpretations. 
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Appendices 
Appendix A. Numerical Limits to QLfrLf 

Throughout the paper, we find the term QLfrLf repeatedly. This term is referred 
to as the Informativity differential in recognizing the central role it plays in de-
scribing how fractional values less than the theoretical limit reflect a distortion 
effect in distance measurement. Knowing the limits to QLfrLf is also essential in 
resolving the fundamental measures. 

The product of QLfrLf is Equation (5) multiplied by b. 

( )21Lf LfQ r b b b= + − .                    (A1) 

Note, what is measured always equals a whole-unit count of a fundamental 
measure, and with a = 1 we find that b = rLf for all values. This is easily verified 
in that the highest value for QLf is obtained for b = 1 where ( )0.521 1 1 0.414+ − =  
and the “observed” distance of c presented as a count rLf is always rounded down 
to the highest integer value equal to the count b with QLf = 0.414 at its highest 
and quickly approaching 0 with increasing b. Therefore, 

( )21Lf Lf Lf Lf LfQ r r r r= + − .                  (A2) 

The lower limit where rLf = 1 is easily produced, ( )1lim 2 1r Lf Lff Q r= = − . 
Conversely, if we divide by rLf, then add rLf, square, subtract 2

Lfr , and divide by 2, 
we find that 

2 1
2 2
Lf

Lf Lf

Q
Q r+ = .                      (A3) 

QLf decreases with increasing rLf until the left term drops out. Distance does 
not need to be significant to reduce the Informativity differential to 0.5. At just 
104lf, QLfrLf rounds to 0.5 to nine significant digits. 

Appendix B. Fundamental Transforms 

On occasion, we find the need to translate from one measure to another. For in-
stance, we may have an expression given in terms of time, but want to create an 
expression in terms of length. This may be accomplished by multiplying by c, 
the speed of light. In this paper, this process is referred to as applying a funda-
mental transform. Each of the transforms may be derived from the definitions of 
the fundamental measures presented in Equations (20)-(22). 

To transform length to time ( )f fl t∆ → , then compare Equations ((20) and 
(21)), 

( ) 3 4

2 2si si
f f

G Gl t
c c
θ θ

∆ → = .                  (B1) 

Therefore, ( ) 1f fl t c∆ → =  and as such, lf/c = tf. This transform is not typi-
cally mentioned as it is a definition of the model. To transform length to mass 

( )f fl m∆ → , then compare Equations (20)-(22), 
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( ) 3

2 2si si
f f

Gl m
cc

θ θ
∆ → = .                   (B2) 

Therefore, ( ) 2
f fl m c G∆ → =  and as such, lfc2/G = mf. 

To transform time to mass ( )f ft m∆ → , comparing Equations ((20) and (21)) 
gives 

( ) 4

2 2si si
f f

Gt m
cc

θ θ
∆ → = .                   (B3) 

Therefore, ( ) 3
f ft m c G∆ → =  giving tfc3/G = mf. 

Appendix C. Effective Count of lf in the Measure of ħ 

The measure of Planck’s constant requires a physical interaction at a specific rel-
ative distance. That distance may be resolved as a count of lf using Equation (5) 
where bLf rounds to rLf and Equation (33) where we have substituted 2

fl  from 
Planck’s relation in Equation (1). We have 

 ( )1 221Lf Lf LfQ r r= + − ,                    (C1) 

3

2si Lf Lf f Lf Lf f
f

c Q r l Q r l
G l

θ
  

= =        

 ,               (C2) 

( )( )1 221

si f si f
Lf

Lf Lf Lf

l l
r

Q r r

θ θ
= =

+ −



,                (C3) 

( )1 22 4 2 si f
Lf Lf Lf

l
r r r

θ
+ − =



,                   (C4) 

2 2 2 2
2 4 2

2
42si f si f si f Lf

Lf Lf Lf Lf

l l l r
r r r r
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Appendix D. Resolving System Counts of Self-Defining Measures 

We may also resolve the respective counts of length and time by expanding each 
expression and setting the target measure equal to one. We distinguish system 
measures as well as system counts by a subscript u. Hence, where lu = 1, we may 
using the equality lfmf = 2θsitf reduce the expression of the count ratio to its sim-
plest form, 

2 2si f si T f

f M f
f

t n
m

l
t

n m
θ θ

= = ,                    (D1) 

2
1si T

M
u

f

f

n t
n

l
m

θ
== ,                      (D2) 
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2
f Tu
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= .                        (D4) 

The same approach may be taken with time: 
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1f Mu Lut n n= .                        (D8) 

Appendix E. Unit Analysis as a Function of the Frame of Reference 

As with many Informativity expressions, unit analysis is challenged because 
self-referencing and self-defining terms are mixed. This happens wherever we 
present an expression that incorporates a system characteristic, such as the sys-
tem constant. The issue differs significantly from a calculation error where both 
the value and units of an expression are incorrect. Properly resolved Informativ-
ity expressions will give the correct value. That is, unit issues arise as a result of 
expressions that mix two frames of reference with respect to a common pheno-
menon.  

Here within, we use Equation (100) as an example to demonstrate the context 
and methods involved in resolving units for Informativity expressions. We begin 
by first demonstrating that the resulting value is the same value as would be re-
solved if we had solved the initial expression. With Mf = 5.7353 × 1053 kg from 
Equation (93) and VU = 3.2360 × 1080 m3 from Equation (97), then 

53
27

80

5.7353 10 1.7723 10
3.2360 10

f
f

U

M
V

ρ −×
= = = ×

×
.            (E1) 

The values are the same. Conversely, the unit issue began with the introduc-
tion of the radial system constant θsi. 

The self-defining dimensionless nature of θsi is important when we make 
substitutions like mf = 2θsi/c as we did in the final reduction. In consideration of 
this variation of the fundamental expression, where ( )2f si Lu Tum c n nθ= =  
from Equations ((78) and (79)) has the units of kilograms and such that  

( ) 2 m sU Lu Tu siH n n c θ= =  from Equation (81) where (nLu/nTu) = 2θsi/c has 
units seconds/meter, then kg = s/m is the “conversion metric” between the 
self-defining and self-referencing value 2θsi/c. 

Moreover, where the frame of reference is a circle with an angle of θsi then h = 
4πlfθsi from Equation (14) has a similar “conversion metric”; its units are meters. 
Making the substitution s/m = kg and meters for h into Equation (100) resolves 
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the conflict in units, 

( )2 3 3 3 3
2 3

6 1 s m s m 1 m s m kg mf
UA c h

ρ  = = ⋅ ⋅ = ⋅ =  .       (E2) 

The practice of mixing self-defining and self-referencing terms is difficult, but 
can be performed consistently so long as one is aware of the frame of reference 
under consideration. Units may always be verified by agreement on the calcu-
lated value and associated units at an early point in the derivation. 
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