[1]
|
Thabit, A.K., Crandon, J.L. and Nicolau, D.P. (2015) Antimicrobial Resistance: Impact on Clinical and Economic Outcomes and the Need for New Antimicrobials. Expert Opinion on Pharmacotherapy, 16, 159-177.
https://doi.org/10.1517/14656566.2015.993381
|
[2]
|
Moxon, C.A. and Paulus, S. (2016) Beta-Lactamases in Enterobacteriaceae Infections in Children. Journal of Infection, 72, S41-S49.
https://doi.org/10.1016/j.jinf.2016.04.021
|
[3]
|
Ainsworth, G.C., Brown, A.M. and Brownlee, G. (1947) Aerosporin, an Antibiotic Produced by Bacillus aerosporus Greer. Nature, 159, 263.
|
[4]
|
Schoenbach, E.B. and Bryer, M.J. (1948) The Clinical Use of Polymyxin. Bulletin of Johns Hopkins Hospital, 82, 637-639.
|
[5]
|
Brown, P. and Dawson, M.J. (2017) Development of New Polymyxin Derivatives for Multi-Drug Resistant Gram-Negative Infections. The Journal of Antibiotics (Tokyo), 70, 386-394. https://doi.org/10.1038/ja.2016.146
|
[6]
|
Rhouma, M., Beaudry, F., Thériault, W. and Letellier, A. (2016) Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Frontiers in Microbiology, 7, 1789.
|
[7]
|
Harada, K., Asai, T., Kojima, A., Oda, C., Ishihara, K. and Takahashi, T. (2005) Antimicrobial Susceptibility of Pathogenic Escherichia coli Isolated from Sickcattle and Pigs in Japan. Journal of Veterinary Medical Science, 67, 999-1003.
|
[8]
|
Enne, V.I., Cassar, C., Sprigings, K., Woodward, M.J. and Bennett, P.M. (2008) A High Prevalence of Antimicrobial Resistant Escherichia coli Isolated from Pigs and a Low Prevalence of Antimicrobial Resistant E. coli from Cattle and Sheep in Great Britain at Slaughter. FEMS Microbiology Letters, 278, 193-199.
https://doi.org/10.1111/j.1574-6968.2007.00991.x
|
[9]
|
Lu, L., Dai, L., Wang, Y., Wu, C., Chen, X., Li, L., Qi, Y., Xia, L. and Shen, J. (2010) Characterization of Antimicrobial Resistance and Integrons among Escherichia coli Isolated from Animal Farms in Eastern China. Acta Tropica, 113, 20-25.
https://doi.org/10.1016/j.actatropica.2009.08.028
|
[10]
|
Olaitan, A.O., Morand, S. and Rolain, J.M. (2014) Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Frontiers in Microbiology, 5, 643.
|
[11]
|
Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.H. and Shen, J. (2016) Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. The Lancet Infectious Diseases, 16, 161-168.
https://doi.org/10.1016/S1473-3099(15)00424-7
|
[12]
|
Olaitan, A.O., Thongmalayvong, B., Akkhavong, K., Somphavong, S., Paboriboune, P., Khounsy, S., Morand, S. and Rolain, J.M. (2015) Clonal Transmission of a Colistin-Resistant Escherichia coli from a Domesticated Pig to a Human in Laos. Journal of Antimicrobial Chemotherapy, 70, 3402-3404.
|
[13]
|
Olaitan, A.O., Chabou, S., Okdah, L., Morand, S. and Rolain, J.M. (2016) Dissemination of the MCR-1 Colistin Resistance Gene. The Lancet Infectious Diseases, 16, 147. https://doi.org/10.1016/S1473-3099(15)00540-X
|
[14]
|
Fehlbaum, P., Bulet, P., Chemysh, S., Briand, J.P., Rousse, J.P., Letellier, L., et al. (1996) Structure Activity Analysis of Thanatin, a 21-Residue Inducible Insect Defense Peptide with Sequence Homology to Frog Skin Antimicrobial Peptides. Proceedings of the National Academy of Sciences, 93, 1221-1225.
https://doi.org/10.1073/pnas.93.3.1221
|
[15]
|
Mandard, N., Sodano, P., Labbe, H., Bonmatin, J.M., Bulet, P., Hetru, C., Ptak, M. and Vovelle, F. (1998) Solution Structure of Thanatin, a Potent Bactericidal and Fungicidal Insect Peptide, Determined from Proton Two-Dimensional Nuclear Magnetic Resonance Data. European Journal of Biochemistry, 256, 404-410.
https://doi.org/10.1046/j.1432-1327.1998.2560404.x
|
[16]
|
Pagès, J.M., Dimarcq, J.L., Quenin, S. and Hetru, C. (2003) Thanatin Activity on Multidrug Resistant Clinical Isolates of Enterobacter aerogenes and Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 22, 265-269.
https://doi.org/10.1016/S0924-8579(03)00201-2
|
[17]
|
Wu, G., Fan, X., Li, L., Wang, H., Ding, J., Hongbin, W., Zhao, R., Gou, L., Shen, Z. and Xi, T. (2010) Interaction of Antimicrobial Peptide s-Thanatin with Lipopolysaccharide in Vitro and in an Experimental Mouse Model of Septic Shock Caused by a Multidrug-Resistant Clinical Isolate of Escherichia coli. International Journal of Antimicrobial Agents, 35, 250-254.
https://doi.org/10.1016/j.ijantimicag.2009.11.009
|
[18]
|
Wu, G., Li, X., Fan, X., Wu, H., Wang, S., Shen, Z. and Xi, T. (2011) The Activity of Antimicrobial Peptide S-Thanatin Is Independent on Multidrug-Resistant Spectrum of Bacteria. Peptides, 32, 1139-1145. https://doi.org/10.1016/j.peptides.2011.03.019
|
[19]
|
Edwards, I.A., Elliott, A.G., Kavanagh, A.M., Zuegg, J., Blaskovich, M.A. and Cooper, M.A. (2016) Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides. ACS Infectious Diseases, 2, 442-450. https://doi.org/10.1021/acsinfecdis.6b00045
|
[20]
|
Ma, B., Niu, C., Zhou, Y., Xue, X., Meng, J., Luo, X. and Hou, Z. (2016) The Disulfide Bond of the Peptide Thanatin Is Dispensible for Its Antimicrobial Activity in Vivo and in Vitro. Antimicrobial Agents Chemotherapy, 60, 4283-4289.
https://doi.org/10.1128/AAC.00041-16
|
[21]
|
Boulanger, N., Munks, R.J., Hamilton, J.V., Vovelle, F., Brun, R., Lehane, M.J. and Bulet, P. (2002) Epithelial Innate Immunity. A Novel Antimicrobial Peptide with Antiparasitic Activity in the Blood-Sucking Insect Stomoxys calcitrans. Journal of Biological Chemistry, 277, 49921-49926. https://doi.org/10.1074/jbc.M206296200
|
[22]
|
Del Valle, P., Garcia-Armesto, M.R., De Arriaga, D., Alez-Donquiles, C.G., Rodriguez-Fernandez, P. and Rua, J. (2016) Antimicrobial Activity of Kaempferol and Resveratrol in Binary Combinations with Parabens or Propyl Gallate against Enterococcus faecalis. Food Control, 61, 213-220.
https://doi.org/10.1016/j.foodcont.2015.10.001
|
[23]
|
Lee, Y.S., Kang, O.H., Choi, J.G., Oh, Y.C., Chae, H.S., Kim, J.H., Park, H., Sohn, D.H., Wang, Z.T. and Kwon, D.Y. (2008) Synergistic Effects of the Combination of Galangin with Gentamicin against Methicillin-Resistant Staphylococcus aureus. The Journal of Microbiology, 46, 283-288. https://doi.org/10.1007/s12275-008-0012-7
|
[24]
|
Blair, J.M., Webber, M.A., Baylay, A.J., Ogbolu, D.O. and Piddock, L.J. (2015) Molecular Mechanisms of Antibiotic Resistance. Nature Reviews Microbiology, 13, 42-51. https://doi.org/10.1038/nrmicro3380
|
[25]
|
Alonso, C.A., Zarazaga, M., Ben Sallem, R., Jouini, A., Ben Slama, K. and Torres, C. (2017) Antibiotic Resistance in Escherichia coli in Husbandry Animals: The African Perspective. Letters in Applied Microbiology, 64, 318-334.
https://doi.org/10.1111/lam.12724
|
[26]
|
Zavascki, A.P., Goldani, L.Z., Li, J. and Nation, R.L. (2007) Polymyxin B for the Treatment of Multidrug-Resistant Pathogens: A Critical Review. Journal of Antimicrobial Chemotherapy, 60, 1206-1215. https://doi.org/10.1093/jac/dkm357
|
[27]
|
Bollenbach, T. (2015) Antimicrobial Interactions: Mechanisms and Implications for Drug Discovery and Resistance Evolution. Current Opinion in Microbiology, 27, 1-9. https://doi.org/10.1016/j.mib.2015.05.008
|
[28]
|
Mohammadi, M., Khayat, H., Sayehmiri, K., Soroush, S., Sayehmiri, F., Delfani, S., Bogdanovic, L. and Taherikalani, M. (2017) Synergistic Effect of Colistin and Rifampin against Multidrug Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. The Open Microbiology Journal, 11, 63-71.
https://doi.org/10.2174/1874285801711010063
|
[29]
|
Lenhard, J.R., Nation, R.L. and Tsuji, B.T. (2016) Synergistic Combinations of Polymyxins. International Journal of Antimicrobial Agents, 48, 607-613.
https://doi.org/10.1016/j.ijantimicag.2016.09.014
|
[30]
|
Velkov, T., Thompson, P.E., Nation, R.L. and Li, J. (2010) Structure-Activity Relationships of Polymyxin Antibiotics. Journal of Medicinal Chemistry, 53, 1898-1916.
https://doi.org/10.1021/jm900999h
|