Ca (II)-EDTA shows antimicrobial activity against periodontopathic bacteria
Tadashi Miura, Koji Tanabe, Masao Yoshinari
.
DOI: 10.4236/jbise.2012.51002   PDF    HTML     6,119 Downloads   10,021 Views   Citations

Abstract

Ethylenediamine-N,N,N’,N’-tetraacetic acid calcium (II) disodium salt (Ca (II)-EDTA) was investigated for its antibacterial activity against the periodontal pathogens Aggregatibacter actinomycetemcomitans, Prevotella intermedia and Porphyromonas gingivalis. We determined the minimum inhibitory concentrations (MIC) of Ca (II)-EDTA and its bactericidal activity. Ethylenediamine-N,N,N’,N’-tetraacetic acid calcium (II) disodium salt inhibited the growth of all the periodontopathic bacteria tested in broth. An MIC of 60 mM was the most effective against P. gingivalis. An adenosine triphosphate bioluminescence assay revealed that Ca (II)-EDTA showed bactericidal activity against the bacteria tested in a time-dependent manner. To determine its safety in mammalian cells, we investigated the viability of murine L929 cells subjected to Ca (II)-EDTA treatment. At 75 mM, 93% ± 0.13% of the cells survived. These results indicate that Ca (II)-EDTA is a candidate chelating agent for prevention of infection by periodontopathic bacteria.

Share and Cite:

Miura, T. , Tanabe, K. and Yoshinari, M. (2012) Ca (II)-EDTA shows antimicrobial activity against periodontopathic bacteria. Journal of Biomedical Science and Engineering, 5, 10-14. doi: 10.4236/jbise.2012.51002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sumida, S., Ishihara, K., Kishi, M. and Okuda, K. (2002) Transmission of periodontal disease-associated bacteria from teeth to osseointegrated implant regions. International Journal of Oral & Maxillofacial Implants, 17, 696-702.
[2] Slots, J. and Genco, R.J. (1984) Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: Virulence factors in colonization, survival, and tissue destruction. Journal of Dental Research, 63, 412-421. doi:10.1177/00220345840630031101
[3] Dzink, J.L., Tanner, A.C., Haffajee, A.D. and Socransky, S.S. (1985) Gram negative species associated with active destructive periodontal lesions. Journal of Clinical Periodontology, 12, 648-659. doi:10.1111/j.1600-051X.1985.tb00936.x
[4] Sweeney, E.A., Alcoforado, G.A., Nyman, S. and Slots, J. (1987) Prevalence and microbiology of localized prepubertal periodontitis. Oral Microbiology and Immunology, 2, 65-70. doi:10.1111/j.1399-302X.1987.tb00292.x
[5] Yoshinari, M., Oda, Y., Kato, T. and Okuda, K. (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials, 22, 2043-2048. doi:10.1016/S0142-9612(00)00392-6
[6] Norowski, P.A. Jr. and Bumgardner, J.D. (2009) Biomaterial and antibiotic strategies for peri-implantitis: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88, 530-543. doi:10.1002/jbm.b.31152
[7] Yoshinari, M., Kato, T., Matsuzaka, K., Hayakawa, T. and Shiba, K. (2010) Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling, 26, 103-110. doi:10.1080/08927010903216572
[8] Yoshinari, M., Kato, T., Matsuzaka, K., Hayakawa, T., Inoue, T., Oda, Y., Okuda, K. and Shimono, M. (2006) Adsorption behavior of antimicrobial peptide histatin 5 on PMMA. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77, 47-54. doi:10.1002/jbm.b.30393
[9] Miura, T., Iohara, K., Kato, T., Ishihara, K. and Yoshinari, M. (2010) Basic peptide protamine exerts antimicrobial activity against periodontopathic bacteria. Journal of Biomedical Science and Engineering, 3, 1069-1072. doi:10.4236/jbise.2010.311138
[10] Sabbioni, E., Girardi, F. and Marafante, E. (1976) Replacement of metal in metalloenzymes. A lead-alkaline phosphatase. Biochemistry, 15, 271-276. doi:10.1021/bi00647a005
[11] Erdoes, E.G. and Wohler, J.R. (1963) Inhibition in vivo of the enzymatic inactivation of bradykinin and kallidin. Biochemical Pharmacology, 12, 1193-1199. doi:10.1016/0006-2952(63)90094-7
[12] Lesley, S.M. and Behki, R.M. (1973) Sensitivity to myxin of Escherichia coli treated with ethylenediaminetetraacetic acid. Canadian Journal of Microbiology, 19, 531-533. doi:10.1139/m73-085
[13] Cossack, Z.T. and van den Hamer, C.J. (1987) Evaluation of the EDTA-washed diet for use in the experimental production of zinc deficiency in human subjects. International Journal for Vitamin and Nutrition Research, 57, 99-102.
[14] Muralidhara and Narasimhamurthy, K. (1991) Assessment of in vivo mutagenic potency of ethylenediaminetetraacetic acid in albino mice. Food and Chemical Toxicology, 29, 845-849. doi:10.1016/0278-6915(91)90112-K
[15] Russo, A. and Levis, A.G. (1992) Further evidence for the aneuploidogenic properties of chelating agents: Induction of micronuclei in mouse male germ cells by EDTA. Environmental and Molecular Mutagenesis, 19, 125-131. doi:10.1002/em.2850190206
[16] Oser, B.L., Oser, M. and Spencer, H.C. (1963) Safety evaluation studies of calcium EDTA. Toxicology and Applied Pharmacology, 5, 142-162. doi:10.1016/0041-008X(63)90039-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.