Living with high concentrations of urea: They can!
Francesca Trischitta, Caterina Faggio, Agata Torre
.
DOI: 10.4236/ojas.2012.21005   PDF   HTML   XML   6,388 Downloads   11,008 Views   Citations

Abstract

Marine elasmobranchs maintain their body fluid isoosmotic or slightly hyperosmotic to the external medium by the retention of large urea concentrations. This review focuses on the strategies adopted by these fishes to maintain a large outwardly direct concentration gradient of this osmolyte minimizing the loss across the main interfaces between body fluid and the external medium such as the gills, the kidney and the rectal gland, thus reducing the cost of making urea. The high plasma osmolarity, mainly main-tained by urea retention, is a challenge to volume homeostasis when fish move from seawater to water with a low salinity, since the high water permeability of branchial epithelium would cause a net flux of water into the animal. Since the renal regulation of urea retention in habitat with different salinities is crucial for the osmotic homeostasis of these species, the regulation of the activity and/or the expression of urea trans porters in renal tubules will be also discussed. In addition attention will be paid on the urea– methylamine system involved in maintaining the stability and functioning of many proteins since it is known that the high urea concentration found in marine elasmobranch fish, similar only to that found in mammalian kidney, has a destabilizing effect on many macromolecules and inhibits functions such as ligand binding.

Share and Cite:

Trischitta, F. , Faggio, C. and Torre, A. (2012) Living with high concentrations of urea: They can!. Open Journal of Animal Sciences, 2, 32-40. doi: 10.4236/ojas.2012.21005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pang, P.K.T., Griffith, R.W. and Atz, J.W. (1977) Osmoregula-tion in elasmobranchs. American Zoologist, 17, 365-377.
[2] Shuttleworth, T.J. (1988) Salt and water bal-ance-ex- trarenal mechanisms. In: Shuttleworth, T.J. Ed., Physiology of Elasmobranch Fishes, Springer-Verlag, Berlin, Heidelberg, 171-199. doi:10.1007/978-3-642-73336-9_6
[3] Karnaky, K. (1998) Osmotic and Ionic Regulation. In: Evans D.H. Ed., The Physi-ology of Fishes, CRC Press, Boca Raton, 157-176
[4] Barton, K.N., Buhr, M.M. and Ballantyne, J.S. (1999) Effects of urea and trimethylamine N-oxide on fluidity of liposomes and membranes of an elasmobranch. American Journal of Physiol-ogy (Regulatory, Integrative and Comparative Physiology), 276, R397-R406.
[5] Hazon, N., Wells, A., Pillans, R.D., Good, J.P., Anderson, W.G. and Franklin, C.E. (2003) Urea based os-moregulation and endocrine control in elasmobranch fish with special reference to euryhalinity. Comparative Biochemistry and Physiology B, 136, 685-700. doi:10.1016/S1096-4959(03)00280-X
[6] Evans, D.H., Pier-marini, P.M. and Choe, K.P. (2004) Homeostasis: osmoregula-tion, pH regulation, and nitrogen excretion. In: Carrier, J.C., Musick, J.A. and Heithaus, M.R., Eds., Biology of Sharks and their Relatives, CRC Press, Boca Raton, 247-268.
[7] Hammerschlag, N. (2006) Osmoregulation in elasmobranchs: A review for fish biologists, behaviourists and ecologists. Marine and Freshwater Behaviour and Physiology, 39, 209-228. doi:10.1080/10236240600815820
[8] Anderson, W. G., Taylor, J. R., Good, J. P., Hazon, N. and Grosell, M. (2007) Body fluid volume regulation in elasmobranch fish. Comparative Biochemistry and Physiology A, 148, 3-13. doi:10.1016/j.cbpa.2006.07.018
[9] Anderson, P.M. (1980) Glutamine- and N-acetylglutamate- dependent carbamoyl phos-phate synthetase in elasmobranchs. Science, 208, 291-293. doi:10.1126/science.6245445
[10] Anderson, P.M. (1991) Glutamine-dependent urea synthesis in elasmobranch fishes. Biochemistry and Cell Biology, 69, 317-319. doi:10.1139/o91-049
[11] Anderson, W.G., Dasiewicz, P.J., Liban, S., Ryan, C., Taylor, J.R., Grosell, M. and Weihrauch, D. (2010) Gastro-intestinal handling of water and solutes in three species of elasmobranch fish, the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate Raja eglanteria. Comparative Biochemistry and Physiology A, 155, 493-502. doi:10.1016/j.cbpa.2009.09.020
[12] Smith, H.W. (1931) The absorption and excretion of water and salts by the elasmobranch fishes. II Marine elasmobranchs. American Journal of Physiology, 98, 296- 310.
[13] Thorson, T.B., Cowan, C.M. and Watson, D.E. (1973) Body fluid solutes of juveniles and adults of the euryhaline bull shark Carcharinus leucas from freshwater and saline environments. Physiologycal Zoology, 46, 29-42.
[14] Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G. N. (1982) Living with water stress: Evo-lution of osmolyte systems. Science, 217, 1214-1222. doi:10.1126/science.7112124
[15] Yancey, P.H. (1994) Com-patible and counteracting solutes. In: Strange, K., Ed., Cellular and Molecular Physiology of Cell Volume Regulation, CRC Press, Boca Raton, 81-109.
[16] Ballantyne, J.S. (1997) Jaws: the inside story. The metabolism of elasmobranch fishes. Comparative Biochemistry and Physiology B, 118, 703-742. doi:10.1016/S0305-0491(97)00272-1
[17] Boylan, J.W. (1967) Gill permeability in Squalus acanthias. In: Gilbert, P.W., Mathewson, R.F., Rall, D.P. and Baltimore, M.D., Eds., Sharks, Skates and Rays, Johns Hopkins Press, 58-74
[18] Part, P., Wright, P.A. and Wood, C.M. (1998) Urea and water perme-ability in dogfish (Squalus acanthias) gills. Comparative Bio-chemistry and Physiology A, 119, 117- 123. doi:10.1016/S1095-6433(97)00400-5
[19] Lande, M.B., Donovan, J.M. and Zeidel, M.L. (1995) The relationship be-tween membrane fluidity and permeabilities to water, solutes, ammonia, and protons. The Journal of General Physiology, 106, 67-84. doi:10.1085/jgp.106.1.67
[20] Hill, W.G., Mathai, J.C., Gen-sure, R.H., Zeidel, J.D., Apodaca, G., Saenz, J.P., Kinne-Saffran, E., Kinne, R. and Zeidel, M.L. ( 2004) Permeabilities of teleost and elasmobranch gill apical membranes: Evidence that lipid bilayers alone do not account for barrier function. American Journal of Physiology (Cell Physiology), 287, C235- C242. doi:10.1152/ajpcell.00017.2004
[21] Smith, C.P. and Wright, P.A. (1999) Molecular characterization of an elasmobranch urea transporter. American Journal of Physiology (Regulatory, integrative and comparative physiology), 276, R622-R626.
[22] Fines, G.A., Ballantyne, J.S. and Wright, P.A. (2001) Active urea transport and an unusual basolateral mem-brane composition in the gills of a marine elasmobranch. American Journal of Physiology (Regulatory, Integrative and Comparative Physiology), 280, R16-R24.
[23] Mathai, J.C., Sprott, G.D. and Zeidel, M.L. (2001) Molecular mechanisms of water and solute transport across archaebacterial lipid mem-branes. Journal of Chemical Biology, 276, 27266-27271. doi:10.1074/jbc.M103265200
[24] Burger, J.W. and Hess, W.N. (1960) Function of the rectal gland in the spiny dogfish. Science, 131, 670-671. doi:10.1126/science.131.3401.670
[25] Burger, J.W. (1967). Problems in the electrolyte economy of the spiny dogfish, Squalus acanthias. In Gilbert P.W., Mathewson R.F., and Rall D.P., Baltimore, M.D., Eds., Sharks, Skates and Rays, Johns Hopkins Press.
[26] Zeidel, J.D., Mathai, J.C., Campbell, J.D., Ruiz, W.G., Apodaca, G. L., Riordan, J. and Zeidel, M. L. (2005) Selective permeability barrier to urea in shark rectal gland. American Journal of Physiology (Renal Physiology), 289, F83-F89. doi:10.1152/ajprenal.00456.2004
[27] Simon, D.B., Lu, Y., Choate, K.A., Velazquez, H., Al-Sabban, E., Praga, M., Casari, G., Bettinelli, A., Colussi, G., Rodriguez-Soriano, J., McCredie, D., Milford, D., Sanjad, S. and Lifton, R.P. (1999) Paracellin-1, a renal tight junction protein required for paracel-lular Mg2+ reabsorption. Science, 285, 62-64. doi:10.1126/science.285.5424.103
[28] Wood, C.M., Part, P. and Wright, P.A. (1995) Ammonia and urea metabolism in rela-tion to gill function and acid- base balance in a marine elasmo-branch, the spiny dogfish (Squalus acanthias). The Journal of Experimental Biology, 198, 1545-1558.
[29] Clark, R.W. and Smith, H.W. (1932) Absorption and excretion of water and salts by the elasmobranch fishes. III. The use of xylose as a measure of the glomerular filtrate in Squalus acanthias. Journal of Cel-lular and Comparative Physiology, 1, 131-143. doi:10.1002/jcp.1030010202
[30] Goldstein, L. and Forster, R.P. (1971) Osmoregulation and urea metabolism in the little skate Raja erinacea. American Journal of Physiology, 220, 742-746.
[31] Payan, P., Goldstein, L. and Forster, R.P. (1973) Gills and kidneys in ureosmotic regulation in euryhaline skates. American Journal of Physiology, 224, 367-372.
[32] Smith, H.W. (1936) The retention and physiological role of urea in the elasmobranchii. Biological Reviews, 11, 49-52. doi:10.1111/j.1469-185X.1936.tb00497.x
[33] Boylan, J.W. (1972) A model for passive urea reabsorption in the elasmo-branch kidney. Comparative Biochemistry and Physiology, 42, 27-30. doi:10.1016/0300-9629(72)90361-1
[34] Schmidt-Nielsen, B., Truniger, B. and Rabinowitz, L. (1972) Sodium-linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comparative Biochemistry and Physiology A, 42, 13-25. doi:10.1016/0300-9629(72)90360-X
[35] Hays, R.M., Levine, S.D., Myers, J.D., Heinemann, H.O., Kaplan, M.A., Frank, N. and Berliner, H. (1977) Urea transport in the dogfish kidney. Journal of Experimental Zoology, 199, 309-316. doi:10.1002/jez.1401990304
[36] Hyodo, S., Katoh, F., Ka-neko, T. and Takei, Y. (2004) A facilitative urea transporter is localized in the renal collecting tubule of the dogfish Triakis scyllia. The Journal of Experimental Biology, 207, 347-356. doi:10.1242/jeb.00773
[37] Lacy, E.R. and Reale, E. (1985) The elasmobranch kidney. II. Sequence and structure of the nephrons. Anatomy and Embryology, 173, 163-186. doi:10.1007/BF00316299
[38] Lacy, E.R. and Reale, E. (1995) Functional morphology of the elasmobranch nephron and re-tention of urea. In: Wood, C.M. and Shuttleworth, T.J., Eds., Cellular and Molecular Approaches to Fish Ionic Regulation, Accademic Press, Inc, S. Diego, 107-137.
[39] Hentschel, H., Elger, M. and Schmidt-Nielsen, B. (1986) Chemical and mor-phological differences in the kidney zones of the elasmobranch, Raja erinacea. Comparative Biochemistry and Physiology A, 84, 553-557. doi:10.1016/0300-9629(86)90364-6
[40] Morgan, R.L., Wright, P.A. and Ballantyne, J.S. (2003) Urea transport in kidney brush-border membrane vesicles from an elasmobranch, Raja erinacea. The Journal of Experimental Biology, 206, 3293-3302. doi:10.1242/jeb.00555
[41] Morgan, R.L., Ballantyne, J.S. and Wright, P.A. (2003) Regulation of a renal urea transporter with reduced salinity in a marine elasmobranch, Raja erinacea. The Journal of Experimental Biology, 206, 3285-3292. doi:10.1242/jeb.00554
[42] Janech, M.G., Fitzgibbon, W.R., Nowak, M.W., Miller, D.H., Paul, R.V. and Ploth, D.W. (2006) Cloning and functional characterization of a second urea trans-porter from the kidney of the Atlantic stingray, Dasyatis sabina. American Journal of Physiology (Regulatory, Integrative and Comparative Physiology), 291, R844-R853. doi:10.1152/ajpregu.00739.2005
[43] Douady, C.J., Dosay, M., Shivji, M. S. and Stanhope, M.J. (2003) Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Molecular Phylogenetic Evolution, 26, 215-221. doi:10.1016/S1055-7903(02)00333-0
[44] Janech, M.G., Fitz-gibbon, W.R., Chen, R., Nowak, M.W., Miller, D.H., Paul, R.V. and Ploth, D.W. (2003) Molecular and functional characteriza-tion of a urea transporter from the kidney of the Atlantic stingray. American Journal of Physiology (Renal Physiology), 284, F996-F1005.
[45] Thorson, T.B. (1970). Freshwater stingrays, Potamotrygon spp.: Failure to concentrate urea when exposed to saline medium. Life Sciences, 9, 893-900. doi:10.1016/0024-3205(70)90059-7
[46] Thorson, T.B. and Gerst, J.W. (1972) Comparison of some parameters of serum and uterine fluid of pregnant, viviparous sharks (Carcharhinus leucas) and serum of their near-term young. Comparative Bio-chemistry and Physiology A, 42, 33-40. doi:10.1016/0300-9629(72)90363-5
[47] Compagno, L.J.V. and Cook, S.F. (1995) The exploitation and conservation of freshwater elasmobranchs: Status of taxa and prospects for the future. Journal of Aquariculture and Aquatic Sciences, 7, 62-90.
[48] Schwartz, F.J. and Dahlberg, M.D. (1978) Biology and ecology of the Atlantic stingray, Dasyatis sabina (Pisces: Dasyatidae), in North Carolina and Georgia. Northeast Gulf Science, 2, 1-23.
[49] Johnson, M.R. and Snelson, F.F.J. (1996) Reproductive life history of the Atlantic stingray, Dasyatis sabina (Pisces, Dasyatidae), in the freshwater St. Johns River, Florida. Bulletin of Marine Science, 59, 74-88.
[50] De Vlaming, V.L. and Sage, M. (1973) Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comparative Biochemistry and Physiology A, 45, 31-44. doi:10.1016/0300-9629(73)90006-6
[51] Wong, T.M. and Chan, D.K.O. (1977) Physiological adjustments to dilution of the external medium in the Lip shark Hemiscyllium plagiosum (Bennett). Journal Experimental Zoology, 200, 85-96. doi:10.1002/jez.1402000111
[52] Cooper, R.A. and Morris, S. (1998) Osmotic and haematological response of the Port Jackson shark Heterodontus portusjacksoni and the common stingaree Trygonoptera testacea upon exposure to diluted sea water. Marine Biology (Berlin), 132, 28-42.
[53] Yamaguchi, Y., Ta-kaki, S. and Hyodo, S. (2009) Subcellular distribution of urea transporter in the collecting tubule of shark kidney is dependent on environmental salinity. Journal of Experimental Zoology A, 311, 705-718. doi:10.1002/jez.558
[54] Klein, J.D., Frohlich, O., Blount, M.A., Martin, C.F., Smith, T.D. and Sands, J.M. (2006) Vaso-pressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts. Journal of the American Society of Nephrology, 17, 2680-2686. doi:10.1681/ASN.2006030246
[55] Blount, M.A., Mistry, A.C., Fr?hlich, O., Price, S.R., Chen, G., Sands, J.M. and Klein, J.D. (2008) Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. American Journal of Physiology, 295, F295-F299. doi:10.1152/ajprenal.00102.2008
[56] Hyodo, S., Tsukada, T. and Takei, Y. (2004) Neurohypophysial hormones of dogfish, Triakis scyllium: structures and salinity dependent secretion. General and Comparative Endocrinology, 138, 97-104. doi:10.1016/j.ygcen.2004.05.009
[57] Hazon, N. and Hender-son, I.W. (1984) Secretory dynamics of 1a-hydroxycorticosterone in the elasmobranch fish, Scyliorhinus canicula. Journal of Endocrinology, 103, 205-211. doi:10.1677/joe.0.1030205
[58] Tam, W.L., Wong, W.P., Loong, A.M., Hiong, K.C., Chew, F.S., Ballantyne, J.S. and Ip, Y.K. (2003) The osmotic response of the Asian freshwater stingray (Himantura signifer) to increased salinity: A comparison with marine (Taeniura lymma) and Amazonian freshwater (Pota-motrygon motoro) stingrays. The Journal of Experimental Biology, 206, 2931-2940. doi:10.1242/jeb.00510
[59] Anderson, W.G., Good, J.P., Pil-lans, R.D., Hazon, N. and Franklin, C.E. (2005) Hepatic Urea Biosynthesis in the Euryhaline Elasmobranch Carcharhinus leucas. Journal of Experimental Zoology A, 303A, 917-921. doi:10.1002/jez.a.199
[60] Thorson, T.B., Brooks, D.R. and Mayes, M.A. (1983) The evolution of freshwater adaptation in stingrays. National Geographic Research Report, 15, 663-694.
[61] Lovejoy, N.R. (1997) Stingrays, parasites, and neotropical biogeography: A closer look at Brooks et al.’s hy-potheses concerning the origins of neotropical freshwater rays (Potamotrygonidae). Systematic Biology, 46, 218- 230. doi:10.1093/sysbio/46.1.218
[62] Thorson, T.B., Cowan, C.M. and Watson, D.E. (1967) Potamotrygon spp.: Elasmobranchs with low urea content. Science, 158, 375-377. doi:10.1126/science.158.3799.375
[63] Gerst, J.W. and Thorson, T.B. (1977) Effects of saline acclimation on plasma electrolytes, urea excretion, and hepatic urea biosynthesis in a freshwater stingray, Potamotrygon sp. Garman, 1877. Com-parative Biochemistry and Physiology A, 56, 87-93. doi:10.1016/0300-9629(77)90446-7
[64] Ip, Y.K., Tam, W.L., Wong, W.P., Loong, A.M., Hiong, K.C., Ballantyne, J.S. and Chew, F.S. (2003) A comparison of the effects of environmental ammonia exposure on the Asian freshwater stingray Himantura signifer and the Amazonian freshwater stingray Potamotrygon motoro. The Journal of Experimental Biology, 206, 3625-3633. doi:10.1242/jeb.00612
[65] Wolff, S.D. and Balaban, R.S. (1990) Regulation of the predominant renal medullary organic solutes in vivo. Annual Review of Physiology, 52, 727-746. doi:10.1146/annurev.ph.52.030190.003455
[66] Frank, H.S. and Franks, F. (1968) Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. Journal of Chemical Physics, 48, 4746- 4757. doi:10.1063/1.1668057
[67] Yang, L. and Gao, Y.Q. (2010) Effects of cosolvents on the hydration of carbon nanotubes. Journal of American Chemistry Society, 132, 842-848. doi:10.1021/ja9091825
[68] Tobi, D., Elber, R. and Thirumalai, D. (2003) The dominant interaction between peptide and urea is electrostatic in nature: A molecular dynamics simulation study. Biopolymers, 68, 359-369. doi:10.1002/bip.10290
[69] Das, P. and Zhou, R. (2010) Urea-induced drying of carbon nanotubes suggests existence of a dry globule-like transient state during chemical denaturation of proteins. Journal of Physical Chemistry B, 114, 5427-5430. doi:10.1021/jp911444q
[70] Zhou, R., Li, J., Hua, L., Yang, Z. and Berne, B.J. (2011) Comment on “urea-mediated protein denaturation: A consensus view”. Journal of Physical Chemistry B, 115, 1323- 1328. doi:10.1021/jp105160a
[71] Yancey, P.H. and Somero, G.N. (1979) Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochemestry Journal, 183, 317-323.
[72] Yancey, P.H. and Somero, G.N. (1980) Methyl-amine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. Journal of Experimental Zoology, 212, 205-213. doi:10.1002/jez.1402120207
[73] Nozaki, Y. and Tanford, C. (1963) The solubility of amino acids and related compounds in aqueous urea solutions. Journal of Biology Chemistry, 238, 4074-4081.
[74] Singh, R., Ali Dar, T., Ahmad, S., Moosavi-Movahedi, A. A. and Ahmad, F. (2008 ) A new method for determining the constant-pressure heat capacity change associated with the protein denaturation induced by guanidinium chloride (or urea). Biophysic Chemistry, 133, 81-89. doi:10.1016/j.bpc.2007.12.006
[75] Bolen, D.W. and Fisher, J.R. (1969) Kinetic properties of adenosine deaminase in mixed aqueous solvents. Biochemistry, 8, 4239-4246. doi:10.1021/bi00839a003
[76] Forster, R.P. and Goldstein, L. (1976) Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. American Journal of Physiology, 230, 925- 931.
[77] Mashino, T. and Fridovich, I. (1987) Effects of urea and trimethylamine- N-oxide on enzyme activity and stability. Archives of Biochemistry and Biophyics, 258, 356-360. doi:10.1016/0003-9861(87)90355-9
[78] Yancey, P.H. (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. The Journal of Experimental Biology, 208, 2819-2830. doi:10.1242/jeb.01730
[79] Withers, P., Hefter, G. and Pang, T.S. (1994) Role of Urea and Methylamines in Buoyancy of Elasmobranchs. The Journal of Experimental Biology, 188, 175-189.
[80] Steele, S.L., Yancey, P.H. and Wright, P.A. (2005). The little skate Raja erinacea exhibits an extrahepatic ornithine urea cycle in the muscle and modulates nitrogen me-tabolism during low-salinity challenge. Physiological and Bio-chemical Zoology, 78, 216-226. doi:10.1086/427052
[81] Pillans, R.D., Good, J.P., Anderson, W.G., Hazon, N. and Franklin, C.E. (2005) Freshwater to sea-water acclimation of juvenile bull sharks (Carcharhinus leucas): plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine. Journal of Comparative Physiology B, 175, 37-44. doi:10.1007/s00360-004-0460-2
[82] Treberg, J.R., Speers-Roesch, B., Piermarini, P.M., Ip, Y.K., Ballantyne, J.S. and Driedzic, W.R. (2006). The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: A comparison of marine and freshwater species. The Journal of Experimental Biology, 209, 860-870. doi:10.1242/jeb.02055
[83] Haubrich, D.R. and Gerber, N.H. (1981) Choline dehydrogenase: Assay, properties and inhibitors. Biochemical Pharmacology, 30, 2993-3000. doi:10.1016/0006-2952(81)90265-3
[84] Maker, J.R., Struem-pler, A. and Chaykin, S. (1963) A comparative study of trimethylamine-N-oxide biosynthesis. Biochemistry et Bio-physica Acta, 71, 58-64. doi:10.1016/0006-3002(63)90985-5
[85] Goldstein, L. (1967). Urea biosynthesis in elasmobranchs. In: Gilbert P.W., Mathewson, R.F., Rall, D.P. and Baltimore, M.D., Eds., Sharks, Skates and Rays, Johns Hopkins Press, Balti-more.
[86] Goldstein, L. and Dewitt-Harley, S. (1973) Trimethylamine oxidase of nurse shark liver and its relation to mammalian mixed function amine oxidase. Comparative Bio-chemistry and Physiology B, 45, 895-903. doi:10.1016/0305-0491(73)90150-8
[87] Goldstein, L. and Funkenhouser, D. (1972) Biosynthesis of trimethylamine oxide in the nurse shark, Ginglymostoma cirratum. Comparative Biochemistry and Physiology A, 42, 51-57. doi:10.1016/0300-9629(72)90365-9
[88] Treberg, J.R. and Driedzic, W.R. (2006) Maintenance and accumulation of trimethylamine oxide by winter skate (Leucoraja ocellata): Reliance on low whole animal losses rather than synthesis. American Journal of Physiology, 291, R1790-R1798.
[89] Cohen, J.J., Krupp, M.A. and Chidsey, C.A. 3rd (1958) Renal conservation of trimethylamine oxide by the spiny dogfish, Squalus acanthias. American Journal of Physiology, 194, 229-235.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.