
Int. J. Communications, Network and System Sciences, 2015, 8, 181-186
Published Online May 2015 in SciRes. http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2015.85019

How to cite this paper: Al Assaf, M.M., Rodan, A., Qatawneh, M. and Abid, M.R. (2015) A Comparison Study between In-
formed and Predictive Prefetching Mechanisms for I/O Storage Systems. Int. J. Communications, Network and System
Sciences, 8, 181-186. http://dx.doi.org/10.4236/ijcns.2015.85019

A Comparison Study between Informed and
Predictive Prefetching Mechanisms for I/O
Storage Systems
Maen M. Al Assaf1*, Ali Rodan1, Mohammad Qatawneh1, Mohamed Riduan Abid2
1King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
2Al Akhawayn University, Ifrane, Morocco
Email: *m_alassaf@ju.edu.jo

Received 22 April 2015; accepted 17 May 2015; published 20 May 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this paper, we present a comparative study between informed and predictive prefetching me-
chanisms that were presented to leverage the performance gap between I/O storage systems and
CPU. In particular, we will focus on transparent informed prefetching (TIP) and predictive pre-
fetching using probability graph approach (PG). Our main objective is to show the main features,
motivations, and implementation overview of each mechanism. We also conducted a performance
evaluation discussion that shows a comparison between both mechanisms performance when us-
ing different cache size values.

Keywords
Informed Prefetching, Predictive Prefetching, Probability Graph, Parallel Storage Systems

1. Introduction
In I/O-intensive computing systems, I/O storage systems form a bottleneck in terms of performance due to the
performance gap that is formed when they are compared with processors. Operating systems researchers have
proposed a variety of software prefetching techniques that aim to preload the data from parallel disks prior to their
actual on-demand requests [1]. Existing prefetching techniques can be categorized into two categories—informed
and predictive. Predictive prefetching mechanisms predict the application’ future I/O data accesses based on the
historical I/O data accesses [2], whereas informed prefetching techniques take the advantage of the applications’
ability to provide hints of their future I/O data accesses in order to preload data [3]-[5]. Transparent informed

*Corresponding author.

http://www.scirp.org/journal/ijcns
http://dx.doi.org/10.4236/ijcns.2015.85019
http://dx.doi.org/10.4236/ijcns.2015.85019
http://www.scirp.org
mailto:m_alassaf@ju.edu.jo
http://creativecommons.org/licenses/by/4.0/

M. M. Al Assaf et al.

182

prefetching (TIP) [5] and predictive prefetching based on probability graph approach (PG) [2] are considered the
leading researches in such scope. In this study, we propose a comparative study between TIP and PG approaches.
We will discuss the features, motivations and contributions of both mechanisms. Our motivation of this research
is: to our best knowledge, our study is the first that provides a study and performance evaluation that compares
between informed and predictive data prefetching mechanisms. So, this comparison will guide researchers to the
suitable prefetching mechanism when using a particular type of execution prototypes and applications. Hence, our
main contribution in this research is conducted in a performance evaluation experiment that compares both of
TIP and PG performance when using different cache size values.

2. Literature Review
Previous researchers have suggested that informed and predictive prefetching mechanisms improve I/O perfor-
mance. To our best knowledge, however, our study is the first that provides a study and performance evaluation
that compare between informed and predictive data prefetching mechanisms.

2.1. Informed Prefetching
An informed prefetching algorithm was firstly proposed by Patterson et al. [5]-[9] that takes the advantage of the
application’s ability to disclose hints of the future I/O data accesses. Hence, it invokes storage parallelisms to
prefetch the data before they are actually accessed by the application. This eliminates I/O stalls and reduces the
application’s execution elapsed time [5] [6] [9].

In parallel storage systems, informed prefetching aims to leverage parallel I/O to improve prefetching perfor-
mance [10] [11].

Other studies used prefetching to reduce storage system energy consumption. Eco-Storage built a module that
prefetch a long sequence of future data accesses and turn off the disks system to reduce energy consumption [4].

Other studies investigated several ways of collecting information to offer accurate access hints for informed
prefetching mechanisms. Accurate hints are important to make informed prefetching efficient [12] [13].

2.2. Predictive Prefetching
Predictive Prefetching (a.k.a., automatic prefetching) aims to build a history of the application on-demand data I/O
requests in order to predict and to prefetch the future accesses [2] [14].

Griffioen and Appleton developed a predictive prefetching model that is based on probability graph approach.
Probability graph in this approach is used to record the application’s past access patterns in order to predict the
future access probabilities [2]. Probability graph is a data structure that uses directed weighted graphs to estimate
access probabilities [2].

There exist several predictive prefetching models and algorithms including data mining, neural networks, and
Markov predictors [15]-[21]. For example, Marko predictors are widely used in web prefetching to predict future
data accesses by applying partial match to find recurring sequences of I/O events.

3. The Compared Prefetching Algorithms
In this section, we will illustrate the key features, motivation, and contribution of both; transparent informed
prefetching (TIP) [5] and predictive prefetching based on probability graph approach (PG).

3.1. Transparent Informed Prefetching (TIP)
Patterson et al. [5]-[9] proposed a transparent informed prefetching (TIP) solution that takes the advantage of the
application’ ability to disclose hints of the future I/O data accesses. Since parallel storage systems are able to
provide several data blocks in parallel, TIP invokes storage parallelisms to prefetch the data before it is actually
accessed by the application. Transparent informed prefetching reduces the application elapsed time due to the
reduction of I/O stalls [5] [6] [9].

The major contribution of Patterson et al. TIP approach is a cost-benefit model that performs informed pre-
fetching and balances cache/buffer space that is shared between the LRU (least-recently-used) cache and the
prefetching buffer [5]. It makes a compromise between the benefit of using more buffers for prefetching and the
cost of ejecting a LRU block or a prefetched data block.

M. M. Al Assaf et al.

183

The key motivations of transparent informed prefetching (TIP) research are:
1. The existence of storage systems parallelism.
2. The ability of applications to disclose hints of their future I/O data accesses.
3. The un-utilized parallel storage system bandwidth by the application.

Accurate hints are important to make informed prefetching efficient [12] [13].

3.2. The Probability Graph Predictive Prefetching Approach (PG)
Griffioen and Appleton [2] proposed a predictive prefetching algorithm based on probability graph approach. The
main concept of this approach is to keep tracking the application’s on-demand I/O data requests in order to build a
history of the past accesses to be used for predicting the future requests and to have them prefetched. Their solu-
tion contributed in reducing the execution time of I/O-intensive applications. Prefetching decisions accuracy is the
most important performance metric in predictive prefetching approach.

The following key factors motivate predictive prefetching research:
1. Not all applications can offer hints of their future data accesses.
2. Predictive prefetching is good for I/O intensive applications. It can prefetch the data even if the application is

not running.
3. It is also good for multiple executables; because it relies on building a history based on the applications’

on-demand I/O data requests. Hence; it detects access patterns of multiple applications that are executed re-
peatedly rather than taking hints from the running applications.

4. It utilizes the un-used parallel storage system bandwidth.
In Griffioen and Appleton model [2], probability graph data structure uses directed weighted graph that consists

of nodes and edges to estimate access probabilities. In the probability graph, there exists a node for each data block
stored in the storage system. Probability graph makes connections among nodes using directed weighted edges.
The edges weights are used to predict the probability that a particular set of data blocks will be accessed in the near
future if a particular data block is currently accessed. Lookahead period is an important input parameter used to
build the probability graph. It determines the relationship between each of the application’s consequent accesses.
Minimum chance value is another input parameter that determines what data blocks to prefetch in case a particular
data block was accessed. Edges weights are considered in this mathematics. Both values of lookahead period and
minimum chance determine the degree of prefetching aggressiveness and accuracy. In this approach, a least re-
cently used (LRU) cache is used to cache both of; the data read by the application on-demand I/O data requests and
the prefetched data.

4. Performance Evaluation
In this section, we will run a performance evaluation comparison between transparent informed prefetching (TIP)
and probability graph predictive prefetching approach (PG). We build a trace driven simulator using C++ to do the
evaluation. First, we will illustrate our system design and assumptions. Then, we will discuss our performance
evaluation.

4.1. System Design
Our simulator implements a parallel storage system that consists of an array of Hard Disk Drives (HDDs). Our
simulator; and as other researchers did, uses small cache sizes that span from 1 to 10 cache buffers where each
buffer can temporarily store one data block. The motivation behind using small cache size is to show the impact of
the prefetching algorithm on the performance. In addition, the cache uses least recently used (LRU) policy to
buffer the on-demand requests and the prefetched data.

4.2. Assumptions
Since we are using small cache sizes, there will be no need to issue too many concurrent prefetching I/O requests
to the parallel storage system. So, regardless the size of the disk array, we assume enough I/O bandwidth that
enables prefetching process to read few data blocks concurrently without causing any I/O congestion.

As we did in [3], [4], and [22], we use LASR real world trace [23] that represent an application that issues
11,686 I/O data read requests of about 800 distinct data blocks. Trace used in our experiments represents an

M. M. Al Assaf et al.

184

application that performs a few overhead processing operations that consume a very tiny CPU processing time
between each two subsequent I/O data requests. Hence, we will ignore the processing time. Our motivation behind
that is to make the application purely I/O intensive. In case there exists some processing overhead between each
two subsequent I/O data requests, this will easy the task of prefetching.

In [3], we validated the disk reading latency when using a range of several data block sizes that span from 1 to
10 MB using Intel 500 GB SATA 16 MB cache HDD. In this study used the smallest validated value (i.e. 1 MB)
due to its suitable value (i.e. applications usually use small size data blocks). So, disk I/O reading latency for a
single data block equals to 0.005 seconds. Also, we used fixed size data blocks of size 1 MB. Hence; each cache
buffer is also of size 1 MB.

In (PG) performance evaluation, we used a moderate degree of prefetching aggressiveness and accuracy by
setting the lookahead period to 1 and the minimum chance to 0.5 as this setting represents the average case of (PG)
performance.

4.3. Performance Evaluation
In this simulation, we test TIP and PG approaches performance in terms of trace (i.e. application) execution
elapsed time when using different cache size values from 1 to 10. Figure 1 shows the performance results. A
decreased execution elapsed time indicates a performance improvement.

Figure 1 shows that both of TIP and PG provide a reduced execution elapsed time as the cache size increases
due the increased hit ratio. TIP cannot provide a significant performance improvement when the cache size is very
little (i.e. equals to 1 and 2). In [3], we called this case: “TIP’s critical case”; where TIP is not able to allocate
enough number of cache buffers for prefetching. In this case, TIP is only doing on-demand requests. Whereas PG
in this case; provides some better performance; that is because it performs some aggressive prefetching. As the
cache size increases, TIP shows significant performance improvement leaps. This is due to the accuracy of in-
formed prefetching compared to the predictive one. When the cache size reaches to 9, TIP starts to show a little
performance improvement leaps. This is because TIP at this point starts to reach the prefetching horizon where
there exists enough cache buffers to store enough amount of data; so prefetching importance will become little.

PG shows a gradual performance improvement as the cache size increases. It is worth mentioning that both TIP
and PG shows their best performance improvement jumps when using small caches. When cache size becomes

Figure 1. LASR trace execution elapsed time when implementing TIP and PG approaches using different
cache size values from 1 to 10.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 3 4 5 6 7 8 9 10

Se
co

nd

Cache Size

Execution elapsed time using TP and PG

TIP

PG

M. M. Al Assaf et al.

185

larger, performance improvement caused by prefetching will become limited. What makes TIP show a better
performance improvement than PG in the most cases is the accuracy of prefetching decisions.

5. Conclusion
In this paper, we presented a comparison study between transparent informed prefetching (TIP) and probability
graph predictive prefetching (PG) in terms of research motivation, implementation, and performance. We con-
ducted a performance evaluation that compares both approaches when using different cache size values. Our
performance evaluation shows that TIP in average provides better performance improvement due to its accurate
prefetching decisions. In general, our results show that prefetching can provide significant leaps in performance
improvement when using small size caches.

References
[1] Yang, C.-K., Mitra, T. and Chiueh, T. (2002) A Decoupled Architecture for Application-Specific File Prefetching.

USENIX Annual Technical Conference, FREENIX Track.
[2] Griffioen, J. and Appleton, R. (1994) Reducing File System Latency Using a Predictive Approach. USENIX Summer,

197-207.
[3] Al Assaf, M.M. (2011) Informed Prefetching in Distributed Multi-Level Storage Systems.

http://hdl.handle.net/10415/2935
[4] Al Assaf, M.M., Jiang, X.F., Abid, M.R. and Qin, X. (2013) Eco-Storage: A Hybrid Storage System with Energy-

Efficient Informed Prefetching. Journal of Signal Processing Systems, 72, 165-180.
http://dx.doi.org/10.1007/s11265-013-0784-9

[5] Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D. and Zelenka, J. (1995) Informed Prefetching and Caching.
Proceedings of the 15th ACM Symposium on Operating System Principles, Copper Mountain Resort, 3-6 December
1995, 79-95.

[6] Tomkins, A., Patterson, R.H. and Gibson, G. (1997) Informed Multi-Process Prefetching and Caching. Proceedings of
the 1997 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, 25, 100-
114. http://dx.doi.org/10.1145/258612.258680

[7] Patterson, R.H., Gibson, G.A. and Satyanarayanan, M. (1993) A Status Report on Research in Transparent Informed
Prefetching. ACM SIGOPS Operating Systems Review, 27, 21-34. http://dx.doi.org/10.1145/155848.155855

[8] Patterson, R.H., Gibson, G.A. and Satyanarayanan, M. (1992) Using Transparent Informed Prefetching (TIP) to Re-
duce File Read Latency. Proceedings of Conference on Mass Storage Systems and Technologies, Greenbelt, MD, Sep-
tember 1992, 329-342.

[9] Patterson, R.H. and Gibson, G. (1994) Exposing I/O Concurrency with Informed Prefetching. Proceedings of the Third
International Conference on Parallel and Distributed Information Systems, Austin, TX, 28-30 September 1994, 7-16.
http://dx.doi.org/10.1109/PDIS.1994.331737

[10] Kimbrel, T., Cao, P., Felten, E., Karlin, A. and Li, K. (1996) Integrated Parallel Prefetching and Caching. Proceedings
of the 1996 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
262-263. http://dx.doi.org/10.1145/233013.233052

[11] Ganger, G.R., Worthington, B.L., Hou, R.Y. and Patt, Y.N. (1994) Disk Arrays: High-Performance, High-Reliability
Storage Subsystems. Computer, 27, 30-36. http://dx.doi.org/10.1109/2.268882

[12] Chang, F. and Gibson, G.A. (1999) Automatic I/O Hint Generation through Speculative Execution. Proceedings of the
3rd Symposium on Operating Systems Design and Implementation, New Orleans, February 1999, 1-14.

[13] Byna, S., Chen, Y., Sun, X.-H., Thakur, R. and Gropp, W. (2008) Parallel I/O Prefetching Using MPI File Caching and
I/O Signatures. International Conference for High Performance Computing, Networking, Storage and Analysis, Austin,
15-21 November 2008, 1-12. http://dx.doi.org/10.1109/sc.2008.5213604

[14] Lewis, J., Alghamdi, M.I., Assaf, M.A., Ruan, X.-J., Ding, Z.-Y. and Qin, X. (2010) An Automatic Prefetching and
Caching System. Proceedings of the 29th International Performance Computing and Communications Conference,
Albuquerque, 9-11 December 2010, 180-187. http://dx.doi.org/10.1109/PCCC.2010.5682310

[15] Chen, Y., Byna, S. and Sun, X. (2007) Data Access History Cache and Associated Data Prefetching Mechanisms.
Proceedings of the AMC/IEEE Conference on Supercomputing, Reno, 10-16 November 2007, 1-12.
http://dx.doi.org/10.1145/1362622.1362651

[16] Nanopoulos, A., Katsaros, D. and Manolopoulos, Y. (2003) A Data Mining Algorithm for Generalized Web Prefetch-
ing. IEEE Transactions on Knowledge and Data Engineering, 15, 1155-1169.

http://hdl.handle.net/10415/2935
http://dx.doi.org/10.1007/s11265-013-0784-9
http://dx.doi.org/10.1145/258612.258680
http://dx.doi.org/10.1145/155848.155855
http://dx.doi.org/10.1109/PDIS.1994.331737
http://dx.doi.org/10.1145/233013.233052
http://dx.doi.org/10.1109/2.268882
http://dx.doi.org/10.1109/sc.2008.5213604
http://dx.doi.org/10.1109/PCCC.2010.5682310
http://dx.doi.org/10.1145/1362622.1362651

M. M. Al Assaf et al.

186

http://dx.doi.org/10.1109/TKDE.2003.1232270
[17] Vellanki, V. and Chervenak, A.L. (1999) A Cost-Benefit Scheme for High Performance Predictive Prefetching. Pro-

ceedings of the 1999 ACM/IEEE Conference on Supercomputing, Portland, 14-19 November 1999, Article No. 50.
[18] Wang, J.Y.Q., Ong, J.S., Coady, Y. and Feeley, M.J. (2000) Using Idle Workstations to Implement Predictive Pre-

fetching. Proceedings of the 9th IEEE International Symposium on High Performance Distributed Computing, Pitts-
burgh, August 2000, 87-94.

[19] Domenech, J., Sahuquillo, J., Gil, J.A. and Pont, A. (2006) The Impact of the Web Prefetching Architecture on the
Limits of Reducing User’s Perceived Latency. IEEE/WIC/ACM International Conference on Web Intelligence, Hong
Kong, 18-22 December 2006, 740-744.

[20] Jeon, J., Lee, G., Cho, H. and Ahn, B. (2003) A Prefetching Web Caching Method Using Adaptive Search Patterns.
2003 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1, 37-40.

[21] Oly, J. and Reed, D.A. (2002) Markov Model Prediction of I/O Requests for Scientific Applications. Proceedings of
the 16th International Conference on Supercomputing, New York, 22-26 June 2002, 147-155.
http://dx.doi.org/10.1145/514191.514214

[22] Al Assaf, M.M., Qin, X., Jiang, X., Zhang, J. and Alghamdi, M. (2012) A Pipelining Approach to Informed Prefetch-
ing in Distributed Multi-Level Storage Systems. 11th IEEE International Symposium on Network Computing and Ap-
plications, Cambridge, 23-25 August 2012, 87-95.

[23] LASR Trace Machine 01. http://iotta.snia.org/

http://dx.doi.org/10.1109/TKDE.2003.1232270
http://dx.doi.org/10.1145/514191.514214
http://iotta.snia.org/

	A Comparison Study between Informed and Predictive Prefetching Mechanisms for I/O Storage Systems
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	2.1. Informed Prefetching
	2.2. Predictive Prefetching

	3. The Compared Prefetching Algorithms
	3.1. Transparent Informed Prefetching (TIP)
	3.2. The Probability Graph Predictive Prefetching Approach (PG)

	4. Performance Evaluation
	4.1. System Design
	4.2. Assumptions
	4.3. Performance Evaluation

	5. Conclusion
	References

